Syllabus for CSCI 5454

Design and Analysis of Algorithms
Spring 2016

January 10, 2016

Lectures: Mon, Weds, Fri, at 10:00-10:50am in ECCS 1B12 (and via BBA)

Professor: Rafael Frongillo

Office: ECCS 111A
Email: raf@colorado.edu (but please ask clarification questions on Piazza)
Course URL: https://www.cs.colorado.edu/~raf/teaching/5454-s16.html

Description: This graduate-level course will cover topics related to algorithm design and
analysis. Topics include divide and conquer algorithms, greedy algorithms, graph algorithms,
learning algorithms, algorithmic game theory, optimization, randomization, and general al-
gorithm analysis. We will not cover any of these topics exhaustively. Rather, the focus will
be on algorithmic thinking, performance guarantees and boundary cases, efficient solutions
to practical problems and understanding how to analyze algorithms. Advanced topics will
cover a selection of modern algorithms, many of which come from real-world applications.

Prerequisites: Undergraduate algorithms (CSCI 3104), data structures (CSCI 2270), dis-
crete mathematics (CSCI 2824) and two semesters of calculus, or equivalents. This class
assumes familiarity with asymptotic analysis (Big-O, etc.), recurrence relations and the cor-
rect implementation of basic algorithms. Students without the required background may
struggle to keep up with the lectures and assignments.

Required Text: None. We will occasionally use Algorithms by Dasgupta, Papadimitriou,
and Vazirani, which is available online for free (also check Moodle).

1


raf@colorado.edu
https://www.cs.colorado.edu/~raf/teaching/5454-s16.html
http://beust.com/algorithms.pdf

Overview:

e Problem sets (5 total) will be due every 2.5 weeks throughout the semester.

e The first 2/3 of the course will be lecture driven, with some time devoted to in-class
problem solving. The remaining time will revolve around independent projects and
presentations thereof (see below).

e The independent project (see below) is a major deliverable for the class. I expect stu-
dents to commit considerable outside time to their completion (> 20 hours). As there
are no formal exams, the project should be treated as a kind of written examination.

Tentative schedule:

Week 1: Warm-up: Divide and conquer
Week 2: Graphs and search

Week 3: Dynamic programming

Week 4: Greed and trees

Week 5: Amortized data structures
Week 6: Randomized algorithms

Week 7: Online learning

Week 8: Algorithmic game theory
Week 9: Optimization

Week 10: Parallelism and streaming
Week 11: Spring break

Week 12-16: Student lectures and project presentations

Assignment Deadline

Problem set 1 Jan. 27 (Wednesday)
Project topic selection Jan. 29 (Friday)
Projects assigned Feb. 5 (Friday)
Problem set 2 Feb. 15 (Monday)
Problem set 3 Mar. 2 (Wednesday)
Problem set 4 Mar. 18 (Friday)
Problem set 5 Apr. 8 (Friday)
Project write-up Apr. 29 (Friday)



Course work and grading:

The grading break-down will be: participation (0.1), project (0.3), problem sets (0.6).
Participation is based on in-class discussions as well as contributions on Piazza. (For distance
students, only the latter.)

Problem sets

e There will be 5 problem sets. The majority of the assignments will be proof-based (a
rigorous deductive argument for a mathematical statement), though from time to time
we will have small programming assignments.

e Your complete solution file must be submitted to Moodle as a single PDF file (apart
from code; see below) by 11:50pm on the due date. Late or improperly formatted
solutions will receive no credit. (I strongly recommend using KTEX to produce your
solutions.)

e Any reasonable imperative language (C/C++, Java, Python, etc.) may be used to com-
plete the programming problems.

Runable source code must be submitted to Moodle as a separate file. Failure to submit
your source code will result in no credit for the programming questions.

Unless specifically allowed, all parts of all algorithms and data structures must be
implemented from scratch (that is, no libraries; if you use Python or another mod-
ern language, be sure you are not accidentally invoking non-trivial libraries; garbage
collection features and static arrays are okay; “dictionary” data structures are not).

e Solutions to mathematical problems should assume a RAM computation model (unless
otherwise specified).

e Your solutions must be detailed, clear, and succinct. Explain in words how you set
up your analysis and explain in detail why your solution is correct, but only give
details relevant to the solution. (Advice for doing this can be found at the end of this
document.)

e Figures and graphs must be labeled correctly. Figures with unlabeled axes or data
series will receive no credit.

e Collaboration is allowed on the problem sets, but you may not copy in any way from
your collaborators and you must respect CU academic policies at all times. You may
discuss the problems verbally, but you must write up your solutions separately.



If you discuss a problem with another student, you must list and describe the
extent of your collaboration prominently at the top of your submission. Copying
from any source in any way, including the Web but especially from another student
(past or present), is strictly forbidden. If you are unsure about whether something is
permitted, please ask before the assignment is due.

There will be a zero-tolerance policy to violations of this requirement. Violators will be

removed from the class and given a failing grade.

e Some topics will only be covered through the problem sets.

Reading and video assignments: Most lectures will have an accompanying reading and/or
video assignment. I expect you to read/view these outside of class and come prepared to
discuss the material.

Independent project

For the course project, students may choose either an implementation project or a research
project. The research project entails more work, and is intended for students wishing to get
involved in “entry-level” research (though more advanced projects will be considered).

e Implementation project

This type of project is relatively straightforward; you will be expected to:

. implement from scratch a non-trivial algorithm or data structure,
. give a detailed mathematical analysis of its correctness, space and time usage,

1
2
3. explain the inputs resulting in worst-, average- and best-case performance,
4. numerically characterize its worst- and average-case space and time usage,
5

. write up these results in a 10-page report, with figures and citations.

In numerically characterizing the space and time performance, you must implement
an appropriate randomized input generator, describe it in your writeup, and use it
to demonstrate that your implementation achieves the claimed asymptotic bounds on
both space and time across input sizes that vary over several orders of magnitude.

Your writeup should explain clearly the type of problems the algorithm solves, the idea
behind the algorithm, your analytic results, and it should both describe and comment



on the results of the numerical tests. You should close with a brief discussion of
extensions, improvements and recent work in its general area.

Some students choosing implementation projects may be solicited for an optional in-
class presentation to describe their topic and results.

e Research project

For this type of project, a student will investigate a topic which is algorithmic in nature,
but for which there is either an open question or unexplored facet, and work to fill
in this gap through novel mathematical or experimental analysis (preferrably both).
This could involve a well-defined open question, or alternatively, reading, critically
evaluating, and trying to extend or modify some research papers (of algorithmic nature)
beyond the scope of the class.

The first step in the research project will be a short (1 page) “proposal”, due at the
topic selection time, suggesting the open question, or papers to read, and an outline of
a plan for the project. Not all proposals will be approved; if not approved, the student
will choose an implementation project topic instead. The final deliverable is a write-
up of at least 10 pages which should contain a summary of the problem and model
considered in the papers, an original critical evaluation of the problem, a summary of
the previous results, your attempts to extend/modify the solution (or solve an open
problem), an intuitive explanation and proof of why some of the results are true, and
why it does or does not extend.

In addition to the write-up, research projects will involve a brief 10-15 minute in-class
presentation during the last 3 weeks of class.

A PDF of the writeup is due by 11:50pm on Friday, April 29th (last day of class). No late
submissions will be accepted. Students will suggest project topics by January 29th from the
list below. For both types of projects, the grade will be determined by the quality of the
analysis and overall written presentation. Original code must be submitted for implemen-
tation projects and relevant research projects. For implementation projects, the presence
of any code that is not original to the submitting student may result in a failing grade; for
research projects, any reused code must be clearly attributed.

If you would like feedback about your project, please come to office hours.



Advice for writing up your solutions:

Your solutions for the problem sets should have the following properties. I will be looking
for these when I grade them:

1.

Clarity: All of your work and answers should be clear and well separated from other
problems. If I can’t quickly identify and understand your solution, I can’t evaluate it.
I will not spend much time looking at any particular solution, so the more clear you
make your work, the more likely you are to get maximum credit.

. Completeness: Full credit for all problems is based on both sufficient intermediate

work (the lack of which often produces a “justify” comment) and the final answer.
There are many ways of doing most problems, and I need to understand exactly how
you chose to solve each problem. Here is a good rule of thumb for deciding how much
detail is sufficient: if you were to present your solution to the class and everyone
understood the steps, then you can assume it is sufficient.

Succinctness: The work and solutions that you submit should be long enough to
convey exactly why the answer you get is correct, yet short enough to be easily di-
gestible by someone with a basic knowledge of the material. If you find yourself doing
more than half a page of dense algebra, generating more than a dozen numeric values
or using more than a page or two per problem, you're probably not being succinct.
Clearly indicate your final answer (circle, box, underline, etc.). Note: it’s usually best
to rewrite your solution to a problem before you hand it in. If you do this, you’ll find
you can usually make the solution much more succinct.

Numerical experiments: Some programming problems will require you to conduct
numerical experiments. For instance, to show that an algorithm takes O(nlogn) time,
you will need to measure the number of atomic operation at multiple values of n, plot
the measured values versus n, and then plot the asymptotic function showing that the
function matches the data. Plotting the average number of operations for a given value
of n will almost always improve your results. To get a good trend, I recommend using
a dozen or so exponentially spaced values of n, e.g., n = {2*,2° ... 21 ..}, When
presenting your results, you must explain your experimental design.

Source code: Your source code for all programming problems must be included with
your solution as a (single) separate file. It should be appropriately commented so that
I can understand what you are doing and why, and it must be run-able — that is, if I
try to compile and run it, it should work as advertised.



Suggestions: Suggestions for improvement of the course are welcome at any time. Any
concern about the course should be brought first to my attention. Further recourse is avail-
able through the office of the Department Chair or the Graduate Program Advisor, both
accessible on the 7th floor of the Engineering Center Office Tower.

Honor Code: As members of the CU academic community, we are all bound by the CU
Honor Code. I take the Honor Code very seriously, and I expect that you will, too. Any
significant violation will result in a failing grade for the course and will be reported. Here is
the University’s statement about the matter:

All students of the University of Colorado at Boulder are responsible for knowing and ad-
hering to the academic integrity policy of this institution. Violations of this policy may
include: cheating, plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and
threatening behavior. All incidents of academic misconduct shall be reported to the Honor
Code Council (honor@colorado.edu; 303-735-2273). Students who are found to be in vio-
lation of the academic integrity policy will be subject to both academic sanctions from the
faculty member and non-academic sanctions (including but not limited to university pro-
bation, suspension, or expulsion). Other information on the Honor Code can be found at
http://www.colorado.edu/policies/honor.html and at
http://www.colorado.edu/academics/honorcode/

Special Accommodations: If you qualify for accommodations because of a disability,
please submit to your professor a letter from Disability Services in a timely manner (for exam
accommodations provide your letter at least one week prior to the exam) so that your needs
can be addressed. Disability Services determines accommodations based on documented dis-
abilities. Contact Disability Services at 303-492-8671 or by e-mail at dsinfo@colorado.edu.

If you have a temporary medical condition or injury, see Temporary Injuries under Quick
Links at Disability Services website and discuss your needs with your professor.

Campus policy regarding religious observances requires that faculty make every effort to deal
reasonably and fairly with all students who, because of religious obligations, have conflicts
with scheduled exams, assignments or required attendance. In this class, I will make reason-
able efforts to accommodate such needs if you notify me of their specific nature by the end
of the 3rd week of class. See full details at
http://www.colorado.edu/policies/fac_relig.html



Classroom Behavior: Students and faculty each have responsibility for maintaining an
appropriate learning environment. Those who fail to adhere to such behavioral standards
may be subject to discipline. Professional courtesy and sensitivity are especially important
with respect to individuals and topics dealing with differences of race, color, culture, religion,
creed, politics, veterans status, sexual orientation, gender, gender identity and gender ex-
pression, age, disability, and nationalities. Class rosters are provided to the instructor with
the student’s legal name. I will gladly honor your request to address you by an alternate
name or gender pronoun. Please advise me of this preference early in the semester so that I
may make appropriate changes to my records. See policies at
http://www.colorado.edu/policies/classbehavior.html and at
http://www.colorado.edu/studentaffairs/judicialaffairs/code.html#student _code

Discrimination and Harrassment: The University of Colorado at Boulder Discrimination
and Harassment Policy and Procedures, the University of Colorado Sexual Harassment Pol-
icy and Procedures, and the University of Colorado Conflict of Interest in Cases of Amorous
Relationships policy apply to all students, staff, and faculty. Any student, staff, or faculty
member who believes s/he has been the subject of sexual harassment or discrimination or
harassment based upon race, color, national origin, sex, age, disability, creed, religion, sexual
orientation, or veteran status should contact the Office of Discrimination and Harassment
(ODH) at 303-492-2127 or the Office of Student Conduct (OSC) at 303-492-5550. Informa-
tion about the ODH, the above referenced policies, and the campus resources available to
assist individuals regarding discrimination or harassment can be obtained at
http://www.colorado.edu/odh



