
SOFIC SHIFTS VIA CONLEY INDEX THEORY: COMPUTING LOWER
BOUNDS ON RECURRENT DYNAMICS FOR MAPS

SARAH DAY∗ AND RAFAEL FRONGILLO†

Abstract. We extend and demonstrate the applicability of computational Conley index techniques for comput-
ing symbolic dynamics and corresponding lower bounds on topological entropy for discrete-time systems governed by
maps. In particular, we describe an algorithm that uses Conley index information to construct sofic shifts that are
topologically semi-conjugate to the system under study. As illustration, we present results for the two-dimensional
Hénon map, the three-dimensional LPA map, and the infinite-dimensional Kot-Schaffer map. This approach signifi-
cantly builds on methods first presented in [DFT08] and is related to work in [Kwa00, Kwa04].

Key words. topological entropy, symbolic dynamics, Conley index, Hénon map, LPA map, Kot-Schaffer map,
computer-assisted proof

AMS subject classifications. 37B10, 37B40, 37B30, 37C25, 37M99

1. Introduction. Computational techniques based on Conley index theory have been used
to study a variety of dynamical systems. With roots in algebraic topology and Morse theory,
Conley index theory allows for the rigorous detection of invariant dynamics even in the presence of
bounded error. Researchers have used Conley index theory to prove the existence of fixed points,
connecting orbits, and (chaotic) horseshoes in systems ranging from the two-dimensional Hénon map
[DJM05] and the three-dimensional Lorenz system of ODEs [MM95, MM98, MMS01] to the infinite
dimensional Kot-Schaffer map [DJM04, DK13]. Many of these results demonstrate the successful
inclusion of topological tools into a computational framework and have led to a growing collection
of software available for extensions and similar studies. Perhaps the most ambitious, systematic
application of these techniques may be found in [AKK+09] where a database of Conley indices is
constructed via a systematic study of parameter space. While these prior studies present significant
progress in this field, they tend to include either fairly localized dynamics [DJM05, DJM04] or
rather coarse descriptions of global dynamics [AKK+09]. The work presented here offers a needed
extension to allow for the detection of very complicated dynamics on a larger, more global scale.

In this paper, we extend work started in [DFT08] toward automating the processing of Conley
index information in detecting highly complicated, often high-entropy, dynamics. Our approach
builds on the work of Szymczak [Szy95] for computing symbolic dynamics from the Conley index
and Kwapiscz [Kwa00, Kwa04] establishing the theoretical framework for extracting complicated
dynamics from information of this type. As the regions where we compute index information
grow in an attempt to approximate and measure a global attractor or maximal invariant set, the
index information becomes increasingly difficult to interpret by hand, making automated methods
necessary for meaningful analysis. The new approach we describe here focuses on computing semi-
conjugate sofic subshifts supported by computed Conley index information. Towards this goal, we
define the labeled Conley index, which contains additional phase space information necessary to the
construction and verification of symbolic dynamics, and places us in the theoretical framework of
cocyclic subshifts developed by Kwapiscz [Kwa00, Kwa04]. We improve on the methods in [DFT08]
by introducing an algorithm to process labeled Conley index information into symbolic systems of

∗The College of William and Mary, Department of Mathematics, P. O. Box 8795, Williamsburg, VA 23187-8795
(sday@math.wm.edu)
†University of Colorado, Boulder, Department of Computer Science, Boulder, CO 80309-0430 (raf@colorado.edu)

1

greater complexity, yielding higher computed lower bounds on topological entropy. Furthermore,
in many cases the constructed system represents the maximal system supported by the index.

A secondary goal of this work is to demonstrate the applicability of this more automated
approach to studying discrete-time systems of any dimension. Toward this goal, we present sample
results for the well-studied two-dimensional Hénon map, the three-dimensional LPA population
model, and the infinite-dimensional Kot-Schaffer (integrodifference) map.

To put our extensions to the work in [DFT08] in perspective, we recall the outline of the general
procedure:

1. Compute an outer approximation (a combinatorial representation of the map that incor-
porates bounded error).

2. Find a region on which to compute Conley index information.

3. Compute the index.

4. Process the index information.

Steps 1 and 3 are well-studied and we will give only a brief description of these steps below, referring
the reader to other sources for more details. Step 4 will be our primary focus in this paper with an
additional, extended discussion of an updated approach for Step 2 as a secondary focus.

In what follows, we present necessary definitions, background, and motivating examples in
Section 2, construct and discuss two key algorithms for analyzing cocyclic shifts and Conley indices
and producing symbolic dynamics in Section 3, and provide sample results for the Hénon, LPA, and
Kot-Schaffer models in Section 4. Following Theorem 4.1 in Section 4.2, we also briefly compare this
method using Conley index theory with an approach based on trellises, a construction developed
by Pieter Collins.

2. Setting and Examples. In this section we review some basic definitions and ideas from
dynamical systems and computational Conley index theory and combine a number of ideas to in-
troduce what we refer to as a labeled Conley index representative. The references [LM95], [Rob95],
[KMM04], [Con78], [MM02], and [DFT08] contain further development and details for background
material. In order to illustrate some of the basic ideas, we will also present some sample computa-
tions for the benchmark Hénon system in Section 2.6.

2.1. Symbolic Dynamics and Topological Entropy. The primary goal of the methods
described in this paper is the construction of a symbolic dynamical system that is topologically semi-
conjugate to the original system. The topological semi-conjugacy links the two systems, establishing
the constructed symbolic system as a “lower bound” on the dynamics of the original system. In
this framework, the symbolic system serves as a catalogue of dynamics—fixed points, periodic
orbits, connecting orbits, and topological entropy are all readily available from a directed graph
representation of the symbolic system as self-loops and cycles, connecting paths, and the log of the
spectral radius (of the associated adjacency matrix for the graph) respectively.

The symbolic systems we focus on here are sofic shifts, which are defined as invariant subsystems
of full shifts as follows. Given a set of symbols A, also referred to as an alphabet, we define the
(one-sided) full shift to be the set of all infinite symbol sequences

AN := {a1a2a3 . . . |ai ∈ A}

together with the shift map σ : AN → AN

σ(a1a2a3 . . .) := a2a3a4

2

A subshift is given by a set Σ ⊂ AN that is forward invariant under σ, that is, σ(Σ) ⊆ Σ so that
σ : Σ → Σ is a well-defined subsystem. There are various presentations for a subshift σ : Σ → Σ.
One method for defining a subshift is creating a list of prohibited words, or blocks of symbols,
and allowing all infinite symbol sequences that do not contain a prohibited word. This list can be
chosen to be finite in the case of subshifts of finite type; methods described in [DFT08] focused on
the construction of subshifts of this form. Graphical presentations, including vertex shifts and edge
shifts, are also useful. See [LM95] for more details. In what follows we focus primarily on vertex
presentations.

Definition 2.1. Let G be a directed graph with vertex set V (G) and edge set E(G). Given an
alphabet set A and vertex labeling L : V (G) → A, we define the corresponding collection of label
sequences of infinite walks in G by

ΣG = {L(v1)L(v2)L(v3) . . . | (vi, vi+1) ∈ E(G)} ⊆ AN.

A graph G (with labeling L) is a vertex presentation of a subshift Σ ⊆ AN if ΣG = Σ. If, fur-
thermore, for each vertex v ∈ V (G) and pair of edges (v, u1), (v, u2) ∈ E(G) out of v, we have
L(u1) 6= L(u2), then we say that G is right-resolving.

Similarly, an edge presentation is a labeling of the edges in a graph, and again it presents the
subshift of labelings of infinite walks in the graph. Note that we can verify σ(ΣG) ⊂ ΣG since each
a = L(v1)L(v2)L(v3) . . . ∈ ΣG has a corresponding walk v1v2v3 . . . in G, and σ(a) will be given as
the label sequence for the walk v2v3v4 . . . in G obtained by removing the first vertex/edge.

A subshift is sofic if it is a factor of a subshift of finite type. We instead take as our definition
a well-known equivalent statement, namely that a subshift has a finite presentation [LM95].

Definition 2.2. A subshift Σ ⊆ AN is sofic if it has a right-resolving vertex presentation with
finitely many vertices.

Subshifts can be characterized by their language, or admissible blocks, which are all words which
appear in some point of the subshift.

Definition 2.3. Given a subshift Σ ⊆ AN, the language B(Σ) of Σ, also called the set of
admissible blocks, is the set of finite words appearing in points of Σ. Formally, given a ∈ AN, let
[a]n = a1a2 · · · an, and Bn(Σ) = {[a]n : a ∈ Σ}; then B(Σ) =

⋃
n∈N+

Bn(Σ) = {[a]n : a ∈ Σ, n ∈
N+}.

In particular, we can now see that the shift space Σ′ is a subshift of Σ if and only if B(Σ′) ⊆ B(Σ).

It is important to note that for an appropriate choice of metric on AN (and hence on ΣG), σ
is a continuous map and σ : ΣG → ΣG is a dynamical system (see e.g. [Rob95]). Sofic subshifts
given with a (finite) vertex shift presentation G are particularly nice for extracting dynamics. For
example, if one is looking for a period n orbit, then one checks that there is a symbol sequence
a∗ = (a1, a2, . . .) ∈ ΣG such that ai+n = ai for all i ∈ N. This periodic symbol sequence corresponds
to a cycle in G.

One way to quantify how complicated a given dynamical system is, is to compute its topological
entropy. The following is based on Bowen’s definition of topological entropy in [Bow71].

Definition 2.4. Let f : S → S be a continuous map. A set W ⊂ S is called (n, ε, f)-
separated if for any two different points x, y ∈ W there is an integer j with 0 ≤ j < n so that the
distance between f j(x) and f j(y) is greater than ε. Let s(n, ε, f) be the maximum cardinality of any

3

(n, ε, f)-separated set. The topological entropy of f is the number

htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))

n
. (2.1)

As a measurement of chaos, we say that a map f for which htop(f) > 0 is chaotic, and, if
htop(f) > htop(g), then f is exhibits more complexity than g.

Once again, we can turn to symbolic dynamics in order to perform concrete computations.
Theorem 2.5 (Robinson, [Rob95]). Let G be a right-resolving vertex shift presentation of the

sofic subshift σ : ΣG → ΣG. Then

htop(σ|ΣG) = lim
N→∞

|BN (ΣG)|
N

= log(sp(G))

where sp(G) is the spectral radius of the adjacency matrix A with

A(i, j) =

{
1 if (vi, vj) ∈ E(G)
0 otherwise

for G.
In essence, (n, ε, σ)-separation is encoded in the representation of the system and may be

computed directly from the vertex shift presentation G.

2.2. The Itinerary Function and Topological Semi-conjugacy. Topological conjugacies
and topological semi-conjugacies link two systems, preserving information about dynamics. The
itinerary function defined below allows us to re-write a system f : S → S as a subshift. Our
methods are designed to ensure that the itinerary function serves as a topological semi-conjugacy
between the two systems.

Definition 2.6. A continuous map ρ : X → Y is a topological semi-conjugacy from ψ : Y → Y
to φ : X → X if ρ ◦φ = ψ ◦ ρ and ρ is surjective (onto). If, in addition, ρ is injective (one-to-one),
then ρ is a topological conjugacy.

Let f : Rn → Rn be a continuous map. A trajectory through x ∈ Rn is a sequence

γx := (. . . , x−1, x0, x1, . . .) (2.2)

such that x0 = x and xn+1 = f(xn) for all n ∈ Z. The invariant set relative to N ⊂ Rn is

Inv(N, f) := {x ∈ N | there exists a trajectory γx with γx ⊂ N}. (2.3)

By construction, Inv(N, f) is in the domain of the itinerary function ρ given below in Definition 2.7.
Topological conjugacies preserve many properties of dynamical systems. For example, if ρ is a

topological conjugacy between φ : X → X and ψ : Y → Y , then y ∈ Y is a periodic point of period
n under ψ (i.e. ψn(y) = y and ψk(y) 6= y for any positive integer k < n) if and only if ρ−1(y) is a
periodic point of period n under φ.

If f : S → S is topologically conjugate to a sofic subshift, then we have a convenient list of
trajectories of f given by the subshift. Indeed, in this case, the topological conjugacy acts as a
coordinate transformation of the original system onto a decipherable (symbolic) system. In practice,
such a complete description may be beyond our reach and we instead construct sofic subshifts that
we prove are topologically semi-conjugate to f : S′ → S′ for some appropriately defined subset S′.

Definition 2.7. Suppose N ⊂ X may be partitioned into a finite number of disjoint, closed
subsets indexed by alphabet A. That is, in addition to each Na being closed, we have that N =

4

∪a∈ANa and Na ∩Na′ = ∅ for all a 6= a′ and a, a′ ∈ A. For S := Inv(N, f), the itinerary function
ρ : S → AN is given by ρ(x) = a0a1 . . ., where aj = a for f j(x) ∈ Na. The above assumptions
ensure that ρ is well-defined.

The itinerary function is continuous under an appropriate choice of metric and naturally satisfies
the commutativity condition required for topological semi-conjugacy (that is, ρ ◦ f = σ ◦ ρ). (See
[Dev89], [Rob95] for more details.) In what follows, we describe a procedure based on Conley index
theory that allows us to construct a sofic subshift σ : ΣG → ΣG with vertex presentation G and
ΣG ⊂ AN so that for some S′ ⊆ S, ρ : S′ → ΣG is surjective. The surjectivity condition completes
the proof that ρ is a topological semi-conjugacy from σ : ΣG → ΣG to f : S′ → S′.

The following theorem also allows us to use a semi-conjugate sofic subshift to obtain a lower
bound for the topological entropy of the system under study. In particular, since ρ being a semi-
conjugacy from f to g ensures that htop(f) ≥ htop(g) [Rob95, Theorem IX.1.7], and htop(σ) =
log(sp(G)) for sofic shift σ : ΣG → ΣG with vertex shift presentation G [LM95], we have the
following.

Theorem 2.8. Suppose that the itinerary function ρ is a semi-conjugacy from sofic subshift
σ : ΣG → ΣG with vertex shift presentation G to f : S′ → S′ for some S′ ⊂ X. Then

htop(f) ≥ log(sp(G))

where sp(G) is the spectral radius of the adjacency matrix for G.

2.3. Conley Index Theory and Ważewski’s Principle. We now define the Conley index
and state a homological version of the Ważewski Principle for maps (Theorem 2.14) which offers
one basic mechanism for using the index to conclude the existence of dynamics.

We begin with some basic definitions.
Definition 2.9. A compact set N ⊂ Rn is an isolating neighborhood if

Inv(N, f) ⊂ int(N) (2.4)

where int(N) denotes the interior of N . S is an isolated invariant set if S = Inv(N, f) for some
isolating neighborhood N .

We use the next two definitions to encode the dynamics on an isolating neighborhood.
Definition 2.10. Let P = (P1, P0) be a pair of compact sets with P0 ⊂ P1 ⊂ X. The map

induced on the pointed quotient space (P1/P0, [P0]) is

fP (x) :=

{
f(x) if x, f(x) ∈ P1 \ P0

[P0] otherwise
. (2.5)

Definition 2.11. ([RS88]) The pair of compact sets P = (P1, P0) with P0 ⊂ P1 ⊂ X is an
index pair for f provided that

1. the induced map, fP , is continuous,
2. P1 \ P0, the closure of P1 \ P0, is an isolating neighborhood.

In this case, we say that P is an index pair for the isolated invariant set S = Inv(P1 \ P0, f).
The following definition is required for the definition of the Conley index.
Definition 2.12. Two group homomorphisms, φ : G→ G and ψ : G′ → G′ on abelian groups

G and G′ are shift equivalent if there exist group homomorphisms r : G→ G′ and s : G′ → G and
a constant m ∈ N (referred to as the ‘lag’) such that

r ◦ φ = ψ ◦ r, s ◦ ψ = φ ◦ s, r ◦ s = ψm, and s ◦ r = φm.

5

The shift equivalence class of φ, denoted [φ]s, is the set of all homomorphisms ψ such that ψ is shift
equivalent to φ.

Definition 2.13. Let P = (P1, P0) be an index pair for the isolated invariant set S =
Inv(P1 \ P0, f) and let fP∗ : H∗(P1, P0) → H∗(P1, P0) be the map induced on the relative ho-
mology groups H∗(P1, P0) from the map fP . The Conley index of S is the shift equivalence class of
fP∗

Con(S, f) := [fP∗]s. (2.6)

The Conley index for the isolated invariant set S given in Definition 2.13 is well-defined, namely,
every isolated invariant set has an index pair, and the corresponding shift equivalence class remains
invariant under different choices for this index pair (see e.g. [MM02]). It is also computable given
an appropriate computational framework, as we discuss in Section 2.5. Note that through our
computational approach, there can be only finitely many generators on each level of homology,
and only finitely many levels of nontrivial homology. Thus throughout the paper, given a basis of
generators, we will write fP∗ as a matrix; see Definition 2.16.

So far we have passed from continuous maps to induced maps on relative homology. Our overall
goal, however, is to describe the dynamics of the original map. One theorem in this direction is a
version of Ważewski’s Principle for flows, reworked for the context of Conley index theory for maps.
See, e.g., [KMM04] for a discussion of Ważewski’s Principle and Theorem 10.91 in [KMM04] for
the extension to the map context.

Theorem 2.14. If Con(S, f) 6= [0]s, then S 6= ∅.
In other words, a nontrivial index indicates that the associated isolated invariant set is nonempty.

2.4. The Labeled Conley Index, Cocyclic Shifts, and Surjectivity. By recording ad-
ditional information in the computation of the Conley index, we can use a modification of The-
orem 2.14 to study finer structure. This extends the construction of the itinerary function ρ in
Definition 2.7 to the simultaneous encoding of algebraic topological map information and follows
closely the approach in [Szy97]. We then use our definition of the labeled Conley index to build
cocyclic shifts, a class defined by Kwapisz [Kwa00], and use this framework to discuss surjectivity
of the itinerary map. This step requires the following corollary to Theorem 2.14.

Corollary 2.15. Let N = ∪a∈ANa ⊂ X be the union of pairwise disjoint, compact sets
indexed by the alphabet A and let S := Inv(N, f) be the isolated invariant set relative to N . For
b = a1a2 . . . an, ai ∈ A, set

fb := fNan ◦ · · · ◦ fNa1
where fNai denotes the restriction of the map f to the region Nai . Then for Sb := Inv(N, fb) ⊂ S,
if

Con(Sb, f
b) 6= [0]s, (2.7)

then Sb 6= ∅. More specifically, there exists a point in S whose trajectory under f travels through the
regions Na1 , . . . , Nan in the prescribed order. Equivalently, the point bN := a1a2 . . . ana1a2 . . . an . . .
is in the image of the itinerary function ρ given in Definition 2.7.

Indices of the type listed in (2.7) may be computed using the following additional information.
(See [KMM04] for further detail about the support operator.)

Definition 2.16. Consider an index pair P = (P1, P0) with associated isolating neighborhood
N = P1 \ P0 and homology maps fP∗ : H∗(P1, P0)→ H∗(P1, P0) as described in Definition 2.13. Let

6

{Na : a ∈ A} be a decomposition of N into pairwise disjoint sets. For a generator g ∈ H∗(P1, P0),
let |g| denote the support of g. That is, |g| is the topological object associated to the algebraic
object g. Suppose that {gi}ni=1 is a basis generating H∗(P1, P0) such that for each i, |gi| ⊂ Na for
exactly one a ∈ A. For ease of notation in what follows, we consider a matrix representation M =
M(fP∗, {gi}ni=1) of the map fP∗ in the basis {gi}ni=1. The labeling function, ` : {1, . . . , n} → A, is
given by `(i) = a where |gi| ⊂ Na. We refer to (fP∗, {gi}ni=1, `) as a labeled index map and (M, `)
as a labeled index representative.

A labeled index map (fP∗, {gi}ni=1, `), and, in particular, a labeled index representative (M, `),
may be used to compute Con(S′, fb) for b = a1 . . . an, ai ∈ A and S′ := Inv(Na1 , f

b). Using an
approach developed by Szymczak [Szy95], we set

fabP (x) :=

{
f(x) if x ∈ Na and f(x) ∈ Nb
[P0] otherwise

, (2.8)

and let fabP∗ : H∗(P1, P0 ∪ (∪c6=aNc)) → H∗(P1, P0 ∪ (∪c6=bNc)) be the corresponding map induced
in relative homology. For b = a1a2 . . . an, (P1, P0 ∪ (∪c6=a1Nc)) is an index pair for the isolated
invariant set Sb = Inv(Na1 , f

b) with index map fana1P∗ ◦ · · · ◦ fa1a2P∗ : H∗(P1, P0 ∪ (∪c 6=a1Nc)) →
H∗(P1, P0 ∪ (∪c 6=a1Nc)). Therefore,

Con(Sb, f
b) = [fbP∗]s (2.9)

where fbP∗ := fana1P∗ f
an−1an
P∗ ◦ · · · ◦ fa1a2P∗ . Using the matrix M given in Definition 2.16 as the

representation of fP∗ in the prescribed basis we have that fabP∗ is the submatrix Mab given by
restricting M to the columns corresponding to the generators in Na and rows corresponding to the
generators in Nb. For example, if g2 and g10 are the generators in Na and g3 is the generator in
Nb then Mab is the 1 × 2 matrix Mab = [M3,2 M3,10]. The map fb may now be written as the
matrix product

fbP∗ = Mana1Man−1an · · ·Ma1a2 . (2.10)

Note that since fPk : Hk(P1, P0)→ Hk(P1, P0), these maps and the matrices in the product preserve
homology level. In other words, grouping the generators {gi} by level of homology Hk yields a block
diagonal form for M . This approach leads to the following, broader definition of a labeled matrix,
a classification that will include labeled Conley index representatives.

Definition 2.17. Given a matrix M ∈ Rn×n and a labeling ` : {1, . . . , n} → A for alphabet
A, we call the pair (M, `) a labeled matrix. As above we write Mab to denote the submatrix of M
with rows `−1(a) and columns `−1(b), and let Mb := Man−1an · · ·Ma2a3Ma1a2 , for b = a1 · · · an.

In order to apply Corollary 2.15 to fb where b = a1 . . . an, we must determine whether the
linear map fbP∗ = Mba1 is shift equivalent to 0. For this we use the fact that for any finite-
dimensional linear map A, we have [A]s = [0]s if and only if A is nilpotent (see Proposition 10.93
in [KMM04]). We therefore design an algorithm that identifies symbol sequences for which no
power of the corresponding matrix product may be 0. This allows us to verify the hypotheses
of Corollary 2.15 and conclude surjectivity of the itinerary function onto the prescribed symbol
sequences. This approach is a modification of the approach proposed in [DFT08] in which we
developed methods to check that matrix products maintained a nonzero trace and were therefore
not shift equivalent to 0 since trace is also preserved by shift equivalence. The approach we propose
here is stronger since a nonzero trace is a necessary but not sufficient condition for a matrix being
non nilpotent.

7

Kwapisz [Kwa00, Kwa04] defines cocyclic shifts, a useful framework in this context. As we
discuss below, we adapt the notation and terminology to better fit our representations of the
Conley index.

Definition 2.18. For the labeled matrix (M, `), define the cocyclic shift to be

Σ(M, `) := {a ∈ AN|M [a]m 6= 0 for all m}. (2.11)

Note that if Mba1 is nilpotent for b = a1 . . . am, then a := bN constructed by repeating the block
b, will be excluded from the cocyclic shift since for n the length of b and k sufficiently large,
M [a]mk = (M [a]m)k = (Mb)k = 0.

Definition 2.18 is a slight departure from the works introducing cocyclic subshifts [Kwa00,
Kwa04]. In these works, cocyclic subshifts are defined by a collection of square matrices {Φa ∈
Rn×n : a ∈ A}; letting Φb := Φbm · · ·Φb1 , the subshift is given by sequences a ∈ AN with Φ[a]m 6= 0
for all m. It is straightforward to check that the definitions cover the same set of subshifts, as
we now briefly argue. Given M and `, we may let Φa be the n × n matrix with the only nonzero
columns being those corresponding to `−1(a). Then Φb 6= 0 if and only if Mba 6= 0 for some a ∈ A,
and thus the corresponding shifts are the same. Conversely, given {Φa}a∈A, we simply let M be
the n2×n2 matrix which assigns exactly n rows/columns to each symbol, and set Mab = Φa for all
symbols a, b ∈ A.

We will routinely visualize labeled matrices as a graph with verticesA and edges (a, b) labeled by
the matrix Mab; see Figure 2.1 for an example. The corresponding cocyclic subshift is therefore the
set of labels of infinite walks in the graph which maintain nonzero matrix products. This graphical
representation of a labeled matrix is a special case of a much more general object introduced by
Kwapisz [Kwa00], called a colored graph with propagation. The latter is a directed graph with edges
labeled by both symbols and arbitrary linear maps, which can be thought of as a generalization
of sofic shifts with an extra constraint that the composition of maps be nonzero. In contrast,
motivated by the Conley index, we merely take a labeled square matrix and write its blocks as
edges in a complete graph (though we often drop edges labeled by a zero matrix).

M =

[
1 1 0 1 1
0 2 0 1 0
1 0 3 0 0
5 0 0 2 0
0 4 1 0 2

]
, `(i) =

{
0 i ∈ {1, 2, 3}
1 i ∈ {4, 5}

N0 N1

[
1 1 0
0 2 0
1 0 3

]
[5 0 0
0 4 1]

[2 0
0 2]

[
1 1
1 0
0 0

]

Fig. 2.1. A labeled matrix for alphabet A = {0, 1}. The corresponding cocyclic shift is the full 2-shift, Σ(M, `) =
{0, 1}N, as evidenced by the fact that the (1, 1) entry of any matrix product is always positive.

We can now give a basic result which connects labeled index computations to a semiconjugacy
between the closure of periodic points of a particular subshift Σ and the original system.

Definition 2.19. Given a subshift Σ ⊆ AN, we denote the set of its periodic points by

P(Σ) = {a1a2 . . . ∈ Σ : for some n, an+i = an for all i ∈ N}.

In the notation of Corollary 2.15, a sequence in P(Σ) may be written as bN where b = a1a2 . . . an

8

is a repeated block in the sequence. We define the periodic closure, P(Σ) of Σ, to be the subshift
given by the closure of P(Σ).

When applied to cocyclic subshifts, the periodic closure corresponds to the set of non-transient
points [Kwa00, Section 5]. These points can be decomposed into a union of (possibly overlapping)
topologically transitive and irreducible systems, which may be further decomposed into aperiodic
systems [Kwa00, Section 6]. Thus, the periodic closure of a cocyclic subshift, which plays a central
role in this paper, has considerable structure.

We now state the key result which allows us to build symbolic systems from Conley index
information.

Proposition 2.20. Following Definition 2.7, consider a partition {Na}a∈A of isolating neigh-
borhood N = ∪a∈ANa into disjoint, closed sets with labels in the alphabet A. For S := Inv(N, f)
let ρ : S → AN on S := Inv(N, f) be the corresponding itinerary function. Suppose that for a
collection of periodic points Σ ⊆ P(AN), each point bN ∈ Σ satisfies Con(Sb, f

b) 6= [0]s. Then for
the closure of the set of periodic orbits, Σ′ := Σ, the (restricted) itinerary function ρ : S′ → Σ′,
where S′ := ρ−1(Σ′), is a topological semi-conjugacy.

Proof. By Corollary 2.15, Con(Sb, f
b) 6= [0]s for periodic point bN ∈ Σ implies that bN ∈ ρ(S),

the image of ρ. Hence, Σ ⊆ ρ(S). Since ρ is continuous and S is compact, ρ(S) must be compact.
Therefore Σ′ := Σ ⊆ ρ(S). Using S′ := ρ−1(Σ′), ρ : S′ → Σ′ is surjective. Since ρ is continuous
and ρ ◦ f = σ ◦ ρ by construction, ρ : S′ → Σ′ is a topological semi-conjugacy.

In general, our constructed subshift Σ′ := Σ will be a subshift of Σ(M, `), the cocyclic shift for
the labeled index. The maximal subshift obtainable by this approach would be Σ′ = P(Σ(M, `))
since the Proposition produces subshifts that are closures of collections of periodic points and a
point a approximated by a periodic point bN having a nontrivial Conley index under (M, `) requires
that each block has a nonzero matrix product. (Note that once we fix a labeled index pair, this
maximal subshift P(Σ(M, `)) does not depend on the choice of labeled index representative (M, `).)
Proposition 2.20 underpins our approach, but leaves an important question unresolved: How can
one verify that all periodic points in Σ have nontrivial Conley indices, when in general there are
infinitely many of them? This is precisely our goal in Section 3.

2.5. Computational Conley Index Theory. Importantly, the isolating neighborhoods, in-
dex pairs, and labeled Conley indices required to construct the necessary cocyclic sub shifts are
computable given an appropriate combinatorial framework. This process can be made fairly gen-
eral, see e.g. [KMV14, KMV16]. For illustration, we now outline one constructive approach that
we used to produce the sample results throughout the paper. Building the framework typically
begins with a discretization of the phase space. One approach is to produce a cubical grid over
a rectangular subdomain. For example, a uniformly-subdivided cubical grid on a rectangular set
W =

∏n
k=1[x−k , x

+
k] ⊂ Rn is given by

G(d) :=

{
n∏
k=1

[
x−k +

ikrk
2d

, x−k +
(ik + 1)rk

2d

] ∣∣∣∣∣ ik ∈ {0, . . . , 2d − 1
}}

where rk = x+
k − x

−
k is the radius of W in the kth coordinate and the depth d is a nonnegative

integer. In order to formalize the connection between sets of grid elements and subsets of the
phase space, we define the topological realization of a collection of grid elements G ⊂ G = G(d) as
|G| := ∪B∈GB ⊂ Rn.

We next produce a discrete version of the continuous map f acting on the grid. By construction,
this discretization records outer bounds on images under f . Typically, one uses outward rounding

9

interval arithmetic and analysis to produce outer bounds on images f(|G|) for individual grid
elements G ∈ G, which are then covered by grid elements to produce the combinatorial outer
bound. The end result is a combinatorial outer approximation F : G ⇒ G, mapping a grid element
G ∈ G to a collection of grid elements F(G) ⊂ G and satisfying f(|G|) ⊂ |F(G)|.

If, in addition, we require that the topological realization |F(G)| is acyclic for every G ∈ G,
that is has the topology of a point, then F is amenable to algorithms for computing isolating
neighborhoods, index pairs, and maps on relative homology. For these computations, it is helpful
to view the combinatorial outer approximation as a directed graph, with a vertex set corresponding
to the collection of grid elements in G and edge set E = {(G1, G2) ∈ G × G | G2 ∈ F(G1)}. In this
setting, isolating neighborhoods and index pairs are given as topological realizations of computed
subsets of grid elements. Algorithms for using combinatorial outer approximations to produce these
sets and compute Conley indices are presented in more detail in [DFT08, DJM05].

Figure 2.2 shows a depiction of an image under a combinatorial outer approximation and
Figure 2.3 shows an isolating neighborhood and index pair computed using a combinatorial outer
approximation of the Hénon map. Other sample results for the Hénon map as well as the LPA model
and Kot-Schaffer equation follow in Sections 2.6 and 4. The combinatorial outer approximations
for the low dimensional systems – the Hénon map (see [DJM05, DFT08]) and the LPA model,
are constructed via a straightforward application of outward rounding interval arithmetic, while
the construction for the Kot-Schaffer model requires more sophisticated analysis to incorporate
truncation and dimension reduction into the procedure (see [DK13]).

F(B)

f(|B|)f(|B|)B

f

Fig. 2.2. A depiction of an outer approximation image, F(B), for grid element B and continuous map f .

2.6. Examples. We conclude with several examples illustrating the above definitions and
motivating the need for an automated approach. The first, in Figure 2.3, is a simple example from
the Hénon system (see Section 4.1) showing a period-two orbit. Here we can see how the labeled
Conley index representative is split into submatrices on the edges corresponding to the maps defined
in Corollary 2.15 and Definition 2.16. In this example, as in Figure 2.1, the matrices are simple
enough that one can easily verify that the matrix products M121 and M212 are non-nilpotent, thus
yielding a nontrivial Conley index for the maps f12

P and f21
P . Hence, from Proposition 2.20 we

can conclude that the vertex presentation on the right, which is its own periodic closure, is semi-
conjugate to the Hénon map on a portion of the phase space. The second example (Figure 2.4),
also from Hénon, gives rise to a more complicated Conley index, but still the corresponding cocyclic
shift is easy to compute by hand, and again we may apply Proposition 2.20.

In contrast to these simple cases, and that of Figure 2.1, we give a more complicated example
in Figure 2.5. Here several regions have multiple generators of homology, and the resulting labeled
Conley index representative is much larger. As a consequence, manually enumerating the periodic
symbol sequences yielding nonnilpotent matrix products, and therefore nontrivial indices, would

10

N0 N1[0]

[−1]

[0]

[1]

0 1

Fig. 2.3. A periodic orbit from the Hénon map on the domain [−2, 2]2 at depth 6. The index pair (left) contains
two disjoint regions, giving rise to a labeled Conley index representative (middle) whose cocyclic shift is that of a
simple period-two orbit (right).

N1

N2

N3

N4N5 N6

N7

[−1]

[−1][−1]

[1]

[−1]

[1]

[1]

[−1]

1

2

3

45 6

7

Fig. 2.4. Chaotic dynamics in the Hénon map on domain [−2, 2]2 at depth 7. The index pair (left) is grown
from the isolating neighborhoods of period-4 and period-6 orbits (see Section 4.2), giving a labeled Conley index rep-
resentative (middle) whose cocyclic shift is the vertex shift shown (right). Omitted edges in the index representative
correspond to the zero matrix, in this case [0].

N1

N2

N3

N4

N5

N6

[
0 1
0 0
0 −1

]

[1 0]

[
0 0 1 0 0
−1 0 0 1 0
0 0 0 0 0
0 1 0 0 1

]

[
0
0
1
0

]

[
0 0 −1
0 0 1
0 0 1
0 0 0
0 0 0

]

[−1 −1 0]

[−1 1 0 0
0 0 0 1

]
[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

]
[

0
1
0

]

Fig. 2.5. A more complicated example of chaos in the Hénon map on domain [−2, 2]2 at depth 8, constructed
from the isolating neighborhoods of three periodic orbits (see Section 4.2). Attaching labels to the 6 disjoint colored
regions of the index pair (left) results in the index map representative (right). The complexity of the index map
representative renders manual calculations tedious. See Figure A.1 for the result of Algorithm 2, which gives a
vertex presentation of this cocyclic shift (which is sofic in this case).

11

be extremely tedious, and impractical for even more complicated examples. A main focus of this
project is the development of the automated methods presented in Section 3.1 to handle these larger
examples. See the Appendix (Figure A.1) for results obtained using this automated approach on
the example presented in Figure 2.5.

3. Processing Conley index information. As seen in Section 2.6, constructing semi-
conjugacies to symbolic dynamics from a labeled Conley index (M, `) becomes very difficult by
hand as the number of regions and generators increases. Day et al. [DFT08] present an algorithm
which processes the labeled Conley index and proves a semi-conjugacy to a subshift of finite type.
In this section, we develop a new algorithm for constructing semi-conjugacies to symbolic dynamics,
focusing instead on the broader class of sofic shifts. Specifically, we will construct a sofic subshift
of the cocyclic shift Σ(M, `). In Section 3.2 we show that this new algorithm is more powerful
and efficient than the previous algorithm of [DFT08]. In addition, this approach achieves the opti-
mal semi-conjugacy, P(Σ(M, `)) (see discussion following Proposition 2.20), whenever it terminates
within the specified number of iterations, a case which arises overwhelmingly in practice.

3.1. Computing sofic subshifts of cocyclic shifts. We first discuss the computation of
a sofic subshift Σ of a cocyclic shift Σ(M, `). Naturally, the algorithm given here will then be
applied to labelled Conley index representatives (M, `), but the algorithm itself is agnostic to the
origin of M and `. As Σ(M, `) is only defined formally in Definition 2.18, the constructed subshift
Σ = ΣG, given by a vertex or edge shift presentation G, offers a more useful, searchable, catalog of
dynamics (see Section 2.1). Our algorithm is closely related to existing constructions for cocyclic
subshifts [Kwa04], as we describe below.

To construct our sofic subshift of Σ(M, `), we iteratively compute matrix products until some
redundancy is detected. The redundancy we search for is when the image space of the matrix
product has been previously seen and recorded. As the matrices are labelled according to `, we
must also record the relevant symbol corresponding to the matrix product; specifically, for a block
b = a1, . . . , an, we represent the corresponding matrix product Mb as the pair {an, ech(Mb)}, where
ech denotes the column echelon form, which uniquely encodes the matrix image (column) space.1

Referring to a (symbol, image space) pair as a state, we iteratively construct a state graph. The
state graph is initialized by constructing states (symbol, full image space) for each symbol in the
alphabet. The algorithm then considers a matrix product resulting from a matrix multiplication
out of an existing state S. This product may yield a new state S′, which is then added to the graph,
or may yield a previously observed state S′; in both cases an edge is added from S to S′. In this
way, the state graph grows by adding edges out of existing states and possibly adding new states
when new pairs (symbol, image space) are observed. When a new edge is added between existing
states, the algorithm has discovered “redundancy” in the matrix products. Because images that
build on that state have been, or will be, computed separately, there is no need to track further
products along this separate path. Often, this procedure reduces the problem of enumerating a
typically infinite list of nonzero matrix products, to a finite set of computations to check nontrivial
matrix image spaces and find redundancies. We describe this procedure formally in Algorithm 1.2

As an example, consider the two-region cocyclic shift Σ(M, `) over alphabet A = {0, 1}, where

1While we assume infinite precision floating-point arithmetic for now, we will ultimately work with integer-
valued matrices in § 3.2, and thus the implementation of ech in Algorithm 1 will produce rational-valued matrices
via exact computations. One could also use the Hermite normal form, which directly computes an integer-valued
representation.

2Code for Algorithms 1 and 2 available at https://github.com/caosuomo/sofproc.

12

https://github.com/caosuomo/sofproc

Algorithm 1 Computing a Sofic Subshift from a Cocyclic Shift

Input: Matrix M ∈ Rn×n, labels ` : {1, . . . , n} → A, and number of iterations τ
Output: A right-resolving vertex presentation G(τ) of a sofic subshift of Σ(M, `)

1: procedure SoficProcessor(M , `, τ)
2: G ← empty graph with states {a, Ia} for all a ∈ A
3: # Here Ia is the na × na identity matrix, where na = |`−1(a)|.
4: Q ← queue initially containing all states of G
5: while Q is not empty, or until τ iterations, do
6: dequeue state {a,A} from Q
7: for b ∈ A do
8: B ← ech(MabA)
9: if B 6= 0 then

10: if {b, B} /∈ G then
11: add state {b, B} to G and enqueue {b, B} into Q

12: add edge ({a,A}, {b, B}) to G

13: return G(τ) = G # Vertex labels are given by L({a,A}) = a

N0 N1

[
1 0
0 −1

]
[1 −1]

[1]

[1
1]

{0,[1 0
0 1]}

{1,[1]}

τ = 0

{0,[1 0
0 1]}

{1,[1]}

τ = 1

{0,[1 0
0 1]}

{1,[1]}

{0,[1
1]}

τ = 2

{0,[1 0
0 1]}

{1,[1]}

{0,[1
1]}

{
0,
[

1
−1

]}
τ = 3

{0,[1 0
0 1]}

{1,[1]}

{0,[1
1]}

{
0,
[

1
−1

]}
τ = 4

Fig. 3.1. A run of Algorithm 1 on a simple two-state example Σ(M, `) (above). The algorithm initializes with
states

{
0,
[
1 0
0 1

]}
and {1,[1]}, creates state

{
0,
[
1
1

]}
in iteration 2, creates state

{
0,
[

1
−1

]}
in iteration 3, and then

terminates after iteration 4 with an empty queue. Note that there is no edge from
{

0,
[
1
1

]}
to a state of the form

{1, ·}, as in iteration 3 the algorithm detects that such a transition would yield a 0 matrix product.
If we had run Algorithm 2 instead, the only difference would be the removal of the dashed edge in the final step.

For this example, this final step does not change the shift space, as both graphs are vertex presentations of the even
shift (see Section 4.3 and Figure 4.4).

M =
[

1 0 1
0 −1 1
1 −1 1

]
and `(1) = `(2) = 0, `(3) = 1, depicted in Figure 3.1. To see how the algorithm

captures “redundancy” in the matrix product image spaces, consider a block b = a1 . . . an with
a1 = 1 and an = 0. The output of Algorithm 1 (Figure 3.1, τ = 4) encodes the fact that the
corresponding matrix product Mb must either be in the space spanned by [1

1] or by
[

1
−1

]
. In this

simple example, Algorithm 1 terminates after only 4 iterations through the while loop. Even on very
large graphs that arise in practice, however, the algorithm often terminates within 2|A| iterations.

13

Fixing labeled matrix (M, `), let G(∞) be the countably infinite graph given by running Algo-
rithm 1 on input (M, `,∞), that is, with τ = ∞. Viewing ech(A) as a representation of im(A),
we see that G(∞) is precisely the graph GP constructed in the proof of Theorem 1 in [Kwa04].
Thus, one may view Algorithm 1 as performing a breadth-first search of GP starting from the full
image states. Its correctness is established by the following Proposition, which follows from the
observation that ΣGP

= Σ(M, `) [Kwa04, Theorem 1].

Proposition 3.1. Let G(τ) be the labeled graph output from Algorithm 1 on input (M, `, τ).
Then G(τ) is a right-resolving vertex presentation of ΣG(τ) ⊆ Σ(M, `). Moreover, if the algorithm
terminates with an empty queue, then ΣG(τ) = Σ(M, `), and in particular, Σ(M, `) is sofic.

Proof. For any τ , we have by construction that G(τ) has finitely many states (at most (τ+1)|A|).
Defining L({a,A}) = a, we see that G(τ) is right-resolving, and thus is a right-resolving vertex shift
presentation of the sofic shift ΣG(τ) . (See Definitions 2.1 and 2.2.) From [Kwa04, Theorem 1] we
have ΣGP

= Σ(M, `), and as observed above, we also have ΣG(∞) = ΣGP
= Σ(M, `). The results

now follow from the following two observations. First, for all τ <∞, we have ΣG(τ) ⊆ ΣG(∞) as no
states are ever removed. Second, if the algorithm terminates with empty queue after τ iterations,
then G(τ) = G(∞), as no new states will ever be added.

The works [Kwa00, Kwa04] establish many interesting and useful properties of cocyclic sub-
shifts. For example, it is shown that cocyclic subshifts can be decomposed into subshifts that have
the specification property [Kwa00, Theorem 7.1]. (A subshift X has specification if there is some
k0 such that for all a,a′ ∈ B(X) and all k ≥ k0 there exists b ∈ Bk(X) such that aba′ ∈ B(X).) As
specification implies that the shift is almost sofic, meaning it can be approximated from within by
sofic subshifts whose entropy approaches the true entropy [Boy00, p. 66], one may ask whether the
sequence of sofic shifts presented by G(τ) in Algorithm 1 achieve this approximation. We can see
that the answer is yes, using a construction in [Kwa04, Lemma 1] of a sequence of finite subgraphs
of G(∞) = GP whose entropy approximates that of Σ(M, `); as G(∞) is reachable from the full
image states, Algorithm 1 eventually reaches these finite subgraphs, and the entropy converges.

Proposition 3.2. limτ→∞ h(G(τ)) = h(G(∞)) = h(Σ(M, `)).

Proof. For any state s in G(∞) we can define τ(s) to be the iteration at which s was added to the
graph. Given any finite subgraph G of G(∞), clearly G is a subgraph of G(τ) where τ = maxs∈G τ(s).
As G(∞) is isomorphic to GP as observed above, the result follows from [Kwa04, Lemma 1]: for
any ε > 0, there exists a finite subgraph G1(ε) of GP such that h(ΣG1(ε)) ≥ h(Σ(GP)) − ε =
h(Σ(M, `))− ε.

Theoretically, Algorithm 1 could produce G(∞) which is countably infinite even in cases when
Σ(M, `) is sofic, though this does not happen for any of our computations involving the Conley
index. For example, Figure A.2 shows a cocyclic representation of the full 2-shift where G(∞)

has infinitely many nodes. (Indeed, as the entries are nonnegative, [Kwa00, Theorem 10.2] shows
that the cocyclic subshift must be sofic.) In this example, however, one may note that starting

Algorithm 1 from the image space
[

1
0
0

]
terminates with the minimal presentation of the full 2-shift.

It therefore may be of interest, should this situation arise frequently in practice, to choose the initial
image spaces more carefully. More generally, we would like an algorithm which can more directly
determine if Σ(M, `) is sofic, and if so, give a finite presentation of it.

3.2. Semi-conjugate sofic subshifts from the labeled Conley index. The algorithm
given in the previous section produces a vertex presentation of a sofic subshift of a given cocyclic shift
Σ(M, `). We now return to our goal of producing semi-conjugate symbolic dynamics from Conley
index information. If the cocyclic shift is generated by a labeled Conley index representative (M, `)

14

Algorithm 2 Producing a Semi-conjugate Sofic Shift

Input: Labeled Conley index representative (M ∈ Zn×n, ` : {1, . . . , n} → A)
Output: A right-resolving vertex presentation G′ of a semiconjugate sofic shift

1: procedure SemiConjugateSoficShift(M , `, τ)
2: G ← SoficProcessor(M , `, τ) # Algorithm 1
3: G′ ← cyc(G) # restriction to cycles in G; see Def 3.3
4: return G′

for a map f , then Proposition 2.20 allows us to define a shift Σ′ that is topologically semi-conjugate
to f on an appropriate subset. Note however that an extra step is required to relate the subshift
produced by Algorithm 1 to our original map f . Specifically, in order to invoke Proposition 2.20
we restrict the computed shift to cycles, as described below. The complete procedure is given as
Algorithm 2.

Definition 3.3. The graph H is a cyclic subgraph of G if E(H) is a cycle in G and V (H) is
the set of vertices appearing in E(H). Then cyc(G) is the graph union of all cyclic subgraphs of G.
In other words, cyc(G) is given by removing all edges and vertices from G which are not contained
in cycles.

We will need this restriction to cycles in order to use Proposition 2.20 to prove a semi-conjugacy
to a closure of periodic points. As the following lemma shows, restricting to the union of cycles in
the presentation of a sofic shift restricts the shift space to its periodic closure.

Lemma 3.4. For a (finite) right-resolving vertex presentation G of ΣG, we have Σcyc(G) =

P(ΣG).
Proof. For a ∈ AN, we have a ∈ P(ΣG) if and only if there is a sequence of periodic points

{a(i)}i∈N ⊆ P(ΣG) such that for all k ∈ N there exists i ∈ N such that [a]k = [a(i)]k. Thus, we
conclude B(P(ΣG)) = B(P(ΣG)). Now, note that w ∈ B(P(ΣG)) if and only if w can be extended
to a cycle in G, which can happen if and only if w ∈ B(Σcyc(G)). As Σcyc(G) and P(ΣG) are both
subshifts, we are done.

Combining this lemma with Propositions 2.20 and 3.1 gives the following corollary showing the
correctness of Algorithm 2.

Corollary 3.5. Let (M, `) be a labeled Conley index representative for f on isolated invariant
set S, and let Σ′ := ΣG′ be the sofic shift presented by the output G′ of Algorithm 2 on input
(M, `, τ) for some maximum iteration number τ . Then (Σ′, σ) is topologically semi-conjugate to f
on an invariant set S′ ⊆ S.

Proof. Since P(Σ′) ⊂ Σ(M, `), Con(Sb, f
b) 6= [0]s for each bN ∈ P(Σ′) (see discussion following

Definition 2.18). By Proposition 2.20, Σ′ = ΣG′ = Σcyc(G′) = P(Σ′) is topologically semi-conjugate
to f .

When Algorithm 2 terminates with an empty queue, the resulting subshift Σ′ = P(Σ(M, `)) is
the maximal subshift obtainable from (M, `) via Proposition 2.20. That is, Σ′ is the closure of all
periodic symbol sequences corresponding to nontrivial Conley indices from (M, `). Moreover, we
can conclude that this maximal subshift is sofic.

3.3. Advantages over previous methods. The approach we have presented above offers
two important advantages over the approach from [DFT08]. The first is that, by focusing on the
broader class of sofic shifts rather than the subshifts of finite type produced in [DFT08], Algorithm 2
can extract strictly more information from the labeled Conley index. Intuitively, this follows as

15

sofic shifts are more expressive than subshifts of finite type. Returning to the conceptual example
in Figure 3.1, the algorithm of [DFT08] would discover that a transition from region N2 to N1 and
back is not allowed in general, and determine that one of the edges (1, 2) or (2, 1) would need to
but removed. After the cyc() operation, this would yield a pair of fixed points, i.e. the subshift
Σ = {1, 2}, which has zero entropy. Algorithm 2, on the other hand, produces the even shift, which
has entropy roughly 0.4812.

To illustrate this difference in practice, consider the standard map, studied in [FT12] using the
index processing methods of [DFT08]. One of the main results in [FT12], Theorem 4.4, concerns
the index pair depicted in Figure 3.2, which has 41 regions. Using the [DFT08] approach for
constructing a subshift of finite type from the computed index representative (M, `), produces
a vertex shift Σ1 with 41 vertices and 55 edges, with topological entropy roughly 0.5451. Using
Algorithm 2 on the same labeled Conley index representative, we obtain a semi-conjugate sofic shift
Σ2, which is not of finite type but contains Σ1, implying that Σ1 (Σ2. Moreover, the topological
entropy of Σ2 is significantly higher at 0.5715, implying that Σ2 has exponentially more periodic
orbits than Σ1. In this example, as happens overwhelmingly in practice, Algorithm 1 terminated
with an empty queue, meaning we have Σ2 = P(Σ(M, `)), the maximal subshift obtainable from
Proposition 2.20. Using minimization techniques described later in Section 4.3, we see that Σ2 has
an edge presentation with 45 vertices and 71 edges, only slightly larger in description size than the
original vertex shift Σ1.

Another advantage comes when considering generators on multiple levels of homology. Recall
from the discussion following Definition 2.13, that M = M(fP∗, {gi}ni=1) is a block-diagonal matrix,
with a blocks corresponding to each homology level. Thus, after running Algorithm 1, we would
expect to see a union of disjoint graphs, where the states in each represent matrix images within
different blocks. This is a major improvement over the algorithms in [DFT08]; consider for example

the matrix

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
, where generators g1, g2 are on level 1, g3, g4 are on level 2, and there are two

regions, N1 containing g1, g3 and N2 containing g2, g4. Using Algorithm 2, we would obtain a graph
with three disjoint components, corresponding to the four points (1, 2, 12, 21). In contrast, the
methods of [DFT08] would be unable to express this system; one could have both 1 and 2 or both
12 and 21, but any larger and spurious connections would appear; for example, adding all four
would give the full 2-shift. Note that even though the shift returned by Algorithm 2 is actually of
finite type in this case, it is not a vertex shift, which is required by [DFT08].

The final advantage of our approach is speed. In practice, Algorithm 2 is considerably faster
than the algorithm given in [DFT08], as one avoids the branch-and-bound search of an exponentially
large solution space, namely the set of edges in the vertex shift to cut. The difference can be quite
dramatic; for the large Hénon example given in Section 4.2, processing time dropped from hours to
well under a minute on the same computer.

3.4. Extensions and generalizations. We used the column echelon form in Algorithm 1, as
a unique way to represent matrix images and check nonnilpotency of the associated matrix products,
but other invariants may be used. For example, we may wish to use the Lefschetz number, a fixed
point invariant computable from Con(S, fb) (see [DFT08]). The Lefschetz number is a stronger
invariant and results in the additional property that periodic orbits in the constructed semiconjugate
subshift have preimages under the itinerary function that are periodic orbits of the same period. We
can modify Algorithm 1 to output a sofic system whose periodic orbits consist entirely of those with
nontrivial Lefschetz numbers by simply replacing ech with another normalization function which
preserves the Lefschetz numbers of the final matrix products. One such function which performs

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•
• •

••

•

•

•

•

•

•

•

• 6

7

32

29

9 10

8

39

3

28

26

33

31

11

34

17

39

35

25

36

37

17

38

3331

5

16

39

7

16

5

4

39

2

1

27

12

13

31

30

34

17
18

10

16

24

23

22

5

15

14

5

16

19
17

21
20

41

39

17

5

9

10

18
10

34

16

7

40

31

30

Fig. 3.2. Index pair from [FT12], and the minimized right-resolving edge presentation of Σ′ = Σ(M, `). We
can see that Σ′ is not a subshift of finite type by looking at the symbol ‘12’: we have 38(12)k13 ∈ B(Σ′) when k is
even but not when k is odd. Note that we use an edge instead of vertex presentation as a result of the minimization
procedure in Section 4.3.

17

well in practice is to divide the matrix by the first nonzero entry, an approach similar to [DFT08].
In terms of the shift space, we would be modifying the definition of a cocyclic shift to (ad-

ditionally) disallow blocks of symbols which correspond to cycles with 0 Lefschetz number; that
is, we disallow points containing a block b = a1a2 . . . am if Lef(Mb) = 0. Replacing ech in Algo-
rithm 1 with a normalization which preserves the Lefschetz number will generally create many more
(symbol,matrix) states, but this is necessary to track the Lefschetz number, which is a stronger in-
variant. In general, any such invariant of interest could be tracked as long as ech is replaced by a
normalization which preserves the invariant.

4. Applications. As mentioned in Section 2.5, computational Conley index methods have
been successfully applied to a variety of systems, including the two-dimensional Hénon map, the
three-dimensional LPA model, and the infinite-dimensional Kot-Schaffer equation. We now use
combinatorial outer approximations for these systems (computed following techniques described in
[DJM05, DFT08, DK13]) to compute and analyze Conley index information capturing increasingly
complicated dynamics. This presents new challenges over what had been faced in previously studies.
Most notably, systematic methods for both constructing isolating neighborhoods and processing the
resulting labeled Conley indices become essential to computing increasingly complicated dynam-
ics. In what follows, we first introduce the three models we use to illustrate the methods, then
describe techniques for constructing isolating neighborhoods containing complicated dynamics and
amalgamating symbols to simplify computed sofic shifts.

4.1. The models. The Hénon map is a map h : R2 → R2 given by

h(x, y) = (1 + y − ax2, bx) . (4.1)

with the classical parameter values a = 1.4, b = 0.3. This map has become the benchmark system
for measurements of complicated dynamics, see e.g. [NBGM08, Gal02, DJM05, DFT08]. Continuing
the study described in [DFT08], we now briefly describe several updated techniques for growing
isolating neighborhoods, and illustrate them together with Algorithm 2 on the Hénon map.

The Larvae-Pupae-Adult (LPA) map, describes the evolution of a population of flour beetles
with three developmental stage classes. The LPA map is given as T : R3 → R3,

T (x, y, z) = ((f1x+ f2y + f3z) · e−λ(x+y+z), p1x, p2y) (4.2)

where fi is the per capita fertility of stage class i at small population sizes, λ is an additional
fertility parameter incorporating nonlinear effects at larger population sizes, and 0 ≤ pi ≤ 1 is the
probability that an individual in stage-class i survives and enters the next stage in one time step
(one application of the map T). Following [UW04], we set f = f1 = f2 = f3 = 37.5, the fertility
parameter to be λ = 0.1 and the survival and transition probabilities to be p1 = 0.8 and p2 = 0.6.
In what follows, we study (4.2) in the domain [0, 400]3.3 In addition to having a higher dimensional
phase space, the LPA model also exhibits slower recurrence times than the Hénon map. The sample
results presented for this model in Section 4.2 give what we believe to be the highest known lower
bound on topological entropy for this model.

The Kot-Schaffer integrodifference operator is a spatially explicit discrete dynamical system that
was introduced in [KS86] to describe populations with distinct growth and dispersal phases. One

3To compute the outer approximation, we used a simple refinement of interval arithmetic, wherein we subdivide
each box uniformly into 27 smaller boxes (3 slices in each dimension), compute the interval images of each smaller
box using interval arithmetic, and then taking the union as the image of the box.

18

example is a population of plants that have a growth phase, producing seeds, and then the seeds are
dispersed during a distinct dispersal phase, giving rise to the next population of plants. In general
form, the Kot-Schaffer model consists of an integrodifference operator Φ : L2([−π, π])→ L2([−π, π])
of the form

Φ[a](y) :=
1

2π

∫ π

−π
b(x, y)G[a](x)dx, (4.3)

with smooth dispersal kernel b(x, y) = b(x− y) and growth operator G. In [DK13], Day and Kalies
describe an approach using Chebyshev interpolants, Galerkin projection, and error analysis to con-
struct an outer approximation for (4.3) with G an L∞-bounded operator that is well-approximated
by a polynomial Nemytskii operator with computable error bounds. The example from [DK13]
which we now study here uses the Ricker growth operator G[a](x) := µ a(x)e−a(x) where µ is
a fitness parameter and c ∈ C2([−π, π]), a nonnegative function with ‖c‖∞ = 1, models het-
erogeneous variation in the fitness of the environment. For the sample results, we set µ = 30
and the Fourier expansions of b and c to be b̂ = [1, 1 − Σ∞n=2λ

n, λ2, λ3, . . .] where λ = 1/15 and
ĉ = [0.5, 0.25, 0, 0, . . .] respectively. The outer approximation for this infinite-dimensional map is
constructed in Fourier space with subdivision only in a finite number of modes, giving a grid of the
form Z = R × V =

∏M−1
n=0

Asn
nsn [−1, 1] ×

∏
n≥M

As∗
ns∗ [−1, 1], where s∗ = 10 and sn, Asn , As∗ are all

positive constants. Modes n ≥ M = 14 are handled analytically while modes n < M are tracked
explicitly using interval arithmetic. Nontrivial subdivision, that is subdividing rather than just
updating the bound on a particular mode, is carried out in the first 6 modes. For more detail on
the combinatorial outer approximation for this model, see [DK13].

4.2. Preprocessing: isolating neighborhood construction. We now present methods for
computing isolating neighborhoods containing complicated dynamics. This approach is a refinement
of one given in [DFT08] and utilizes isolating neighborhoods of periodic orbits as a base for the
construction. Motivated by the idea that periodic orbits, and especially low period periodic orbits,
may be used to approximate mixing on an attractor and topological entropy, we begin by computing
isolating neighborhoods for cycles in a directed graph representation for the combinatorial outer
approximation. Taking the union of some, or all, of these isolating neighborhoods yields a larger
set whose isolating neighborhood often contains not only the periodic orbits corresponding to the
originally computed cycles, but also other orbits that weave in and out of these.

Generally speaking, if we view the combinatorial outer approximation as a directed graph, we
expect a period-k orbit to correspond to a length-k cycle in the graph. Thus, to locate candidate
regions for periodic orbits, we can examine the cycles in the combinatorial outer approximation, as
has been done in previous work (see e.g. [DFT08] and references therein). Here, we introduce a
slightly more sophisticated approach, where we instead calculate the first return time of each grid
element B, which is the length of the shortest cycle containing B. First return times have several
advantages, including efficiency and the lack of duplicates among different periods. Note that a
grid element with first return time k does not necessarily contain any k-periodic points, but by the
nature of the combinatorial outer approximation, we are guaranteed to have captured all k-periodic
points in boxes whose first return times are k or factors of k (e.g. a period-7 orbit may fit entirely
within a single grid element). The computation is done using a simple breadth-first search (BFS),
and is given as Algorithm B.1.

Given periodic orbit candidates of period k, we use the Conley index to verify them. Specifically,
we take a candidate grid element, compute a cycle within the candidate set in the graph of length
k, grow an isolating neighborhood for these k boxes, and check that the Conley index is consistent

19

with a period k orbit. If successful, we add the isolating neighborhood to a list of verified orbits. We
then remove the neighborhood from the candidate boxes, and proceed until all boxes are processed.
(See Algorithm B.2.)

To build more complicated dynamics, we take the union of the neighborhoods of a subset of
the verified (usually low-period) orbits, and use the result to grow our final neighborhood. For
example, one may grow a neighborhood from all periodic orbits up to period 8. This approach
often produces more dynamics than the sum of its parts; in addition to the union of the periodic
orbits, disjoint regions may grow together (or “glue”), and the larger isolating neighborhood may
include additional trajectories not seen by restricting to any of the smaller isolating neighborhood.
This leads to additional edges in the resulting sofic shift. As an illustration, Figure 2.4 depicts an
index pair from the Hénon map at depth 7, which is grown from the isolating neighborhoods of a
period-2 and a period-4 orbit. One can see that the resulting semiconjugate subshift is the “gluing”
of these two orbits together into a simple horseshoe. Similarly, the index pair in Figure 2.5, from
Hénon at depth 8, is the union of neighborhoods for period-4, period-6, and period-7 orbits; these
orbits can be read off easily from the sofic shift generated by Algorithm 2, shown in Figure A.1.

Taking this approach to the extreme gives the following example, again on the Hénon map but at
depth 14 instead of 8, which gives us a 64-fold increase in resolution. Here we verify 700 orbits with
periods less than 19, and using a simple randomized binary search algorithm (see Algorithm B.4),
select 350 of them to grow an index pair. The resulting isolating neighborhood has 185030 boxes
(with 3193 additional exit set boxes), consisting of 342 disjoint regions (Figure 4.1). Computing
the Conley index yields a labeled index representative with 2062 generators of homology, and
applying Algorithm 2 to this representative yields a semiconjugate sofic shift with a right-resolving
vertex presentation with 388 vertices and 586 edges (Figure 4.2(L)). As a subroutine, Algorithm 1
terminates with an empty queue in 395 iterations,4 which by Proposition 3.1 implies that the
maximal subshift P(Σ(M, `)) is sofic in this case. The entire run of Algorithm 2 took under 5
seconds on a commodity laptop.

To measure the complexity of the dynamics we capture on the Hénon attractor, we can examine
the topological entropy of the computed sofic shift. As mentioned in Section 2, the topological
entropy of a sofic subshift produced by Algorithm 2 is readily attainable as the log of the spectral
radius of its returned vertex presentation. Since the sofic subshift is semi-conjugate to the system
that generated the input labeled Conley index, this computed topological entropy serves as a lower
bound for the original system. Putting all of the above together yields the following theorem.

Theorem 4.1. The topological entropy of the Hénon map is at least 0.4555.
The bound we achieve here is considerably higher than the Conley index and SFT-based bound

of 0.4320 computed in [DFT08]. This improvement is due to our more principled method for building
the index pair, i.e. as a union of verified periodic orbits rather than computing pairwise connections
in the outer approximation, as well as the transition from SFTs to sofic shifts made possible by
Algorithm 2. Interestingly, the improvement is certainly not from advances in computational power,
as the computations were performed on the same commodity laptop as the previous study [DFT08].
Increasing the depth from 14 to 16 or 17 should yield a higher entropy bound.

Other techniques may also be used to compute symbolic dynamics for Hénon and similar maps.
One leading approach based on trellises applies to diffeomorphisms and requires careful calculations
of finer grain information about the system. Pieter Collins first defined trellises in [Col04, Col05] and

4The reader may have noted that when Algorithm 1 terminates with an empty queue, the number of iterations
must equal the number of vertices, in this case 395. The discrepancy between 395 and 388 is due to 7 vertices being
orphaned during the periodic closure step, and thus removed.

20

Fig. 4.1. The index pair for the Hénon map at depth 14 used in Theorem 4.1. The entropy of the resulting
sofic subshift is approximately 0.45558.

68

78

207

201

267

110

255

134

233

160

12

107

127299

276

187

44

54

141

34

308

318 71

112

196

213

175

98

61

164

335

228

238

255

101

148

116

288

147

14

95

148

320

31

274

162

21

301

100

240

107

92194

202

121

333

11

298

221

275

114

132

43

142

253

20

307

159

261

94

256

26

52

62

149

107

225

227
79

322

144

97

181

242

260

64

18

203

36

157

328

180

282

45

8

119

222

309

77

248

272

131

19

229

304

258

98

197

122

51

146

35

5

104

224

178

66

251

205

140

330

148

27
197

103

237

152
86

4

291

125

250

179

133

91
86

105

220

23

211

306

172

165

53

128

338

16

226

155

85

280

104

48
151

2

220

25

184

312

266

177

200

154

339

293

99

182

232

120

182

325

74

3

265223

202

75

95

279

107

294

130

245

172

223
195

208
311

305

214

50

72

235

289

337

106

29

231

314
82

101

175

136

1

109

24

96

234

163

26

35

56 10

106

123
332

83

185

37

213

0

115

210

69
252

102

264

135

129

331

32

38

296

161

176

302

55

138

49

323

29

216

313

81

336

58

243

7

239

257

263

90

278

111

156

166

319

9

117

295

319

80

183

198

35

170

321

76

215

91

209

340
118

241

218

171

284

40

143

137

107

46

316

67

326

169

204

63

192

97

95

195

100

236

246

89

124

172
22

145

168

271
286

39

33

219

174

173

303

297

57

65

88

191
206

42

285

225

329

84

270

25

217

75
262

17

126

139

150

249

273

28

315

167

269

292

96

60

70

199

193

103

324

334

87

189

212

218

99

113

244

254

268

257

15

30

300

310

153

188

47

29041

105

327

341

283

230

317
175

73

93

108

186

247

6

97

186

102

184

59
158

13

287

281

190

277

259

Fig. 4.2. The right-resolving vertex presentation of the sofic shift produced for Theorem 4.1, with 388 vertices
and 586 edges. The thick segment at the end of an edge denotes its direction. See Figure A.3 for the significantly
smaller minimized edge presentation of this vertex presentation.

21

1

12

3

17

4
7

9

28

8

2

13

20

23

25

5

15

24

18

29

16

10

21

31

12

14

19

26

6

11

30

22

27

3

Fig. 4.3. (L) The index pair for the LPA map (4.2) at depth 14 used in Theorem 4.2. (R) The resulting vertex
shift presentation of the sofic shift returned by Algorithm 2, the labels for which correspond to a labeling of the 31
disjoint regions of the isolating neighborhood.

their construction uses information about pieces of stable and unstable manifolds to force dynamics.
Following this construction, Newhouse et al. [NBGM08] developed an algorithm to calculate regions
bounded by pieces of the one-dimensional stable and unstable manifolds for the hyperbolic fixed
point on the Hénon attractor as well as how these regions map across one another. The resulting
symbolic dynamics yields the best known lower bound for the Hénon system of 0.46469. Methods of
this type rely on careful calculations of stable and unstable manifolds, the regions they bound, and
how these regions map across each other. By comparison, our approach requires only construction of
an outer approximation (i.e. the ability to compute reasonable outer bounds on the images of cubical
grid elements) and a coarse level of hyperbolicity necessary to produce a nontrivial Conley index.
It would be interesting to study the use of adaptive grids in the outer approximation construction
and whether such an approach, motivated by the idea of approximating the regions used in trellis
calculations, could be used to further optimize the methods presented here.

To emphasize that the approach presented here is not restricted to planar diffeomorphisms
or maps for which we can compute stable and unstable manifolds, we now apply our techniques
to the LPA model and, in Section 4.3, the Kot-Schaffer model. The next sample result gives,
to our knowledge, the first nonzero lower bound on topological entropy for the LPA map. We
begin by gathering all periodic orbits up to period 28 at depth 14 and grow an index pair whose
isolating neighborhood has 60974 boxes (with 702 additional exit set boxes), consisting of 31 disjoint
regions. The labeled index representative has 36 generators of homology. Running Algorithm 2 on
this labeled representative, we compute the semi-conjugate sofic subshift with vertex presentation
shown in Figure 4.3. Finally, computing the topological entropy of this vertex presentation yields
the following theorem.

Theorem 4.2. The topological entropy of the LPA map (4.2) is at least 0.1203.

4.3. Postprocessing: Minimization and Amalgamation. As one can see from the sample
results in Section 4.2, the sofic shifts produced by Algorithm 2 can be quite complicated, with
hundreds of symbols, states, and transitions. While some of this complexity is of course inherent in
the dynamics, some of it may be unnecessary, arising from the particular discretization of the phase

22

{0,[1 0
0 1]}

{0,[1
1]}

{
0,
[

1
−1

]}

{1,[1]}

{0,[1
1]}

{1,[1]}{
0,
[

1
−1

]}
0

0

1

Fig. 4.4. The minimization of the final vertex presentation from Figure 3.1, yielding the standard edge presen-
tation of the even shift.

space. A natural question is thus whether we can find a more compact representation, which is only
as complex as required to describe the dynamics. Here we discuss two techniques to reduce the size
of the representation while preserving the underlying dynamics. The first technique computes the
minimal right-resolving edge presentation for a sofic shift, which combines redundant states/nodes
together while exactly preserving the original subshift. The second modifies the shift by combining
symbols in the alphabet, via a process called amalgamation, in a way which preserves the dynamics
up to conjugacy.

It is well-known that sofic shifts are closely related to deterministic finite automata (DFA) from
information theory and computer science: both have a finite state graph with transitions labeled
by symbols, and both have sets of blocks associated with them, the language of a DFA and the
allowed blocks of a sofic shift. The main difference between the two is that DFAs have explicit
start, accept, and reject states, but allow transitions on any symbol, whereas sofic shifts have only
accept states, and disallow certain transitions; sofic shifts can thus be simulated by a DFA by filling
in missing transitions and directing them to a new reject state. The DFA minimization problem,
that of finding a DFA accepting the same language but with the fewest possible states, is well-
studied, and enjoys fast algorithms for this task such as Hopcroft’s algorithm [Hop71]. Given an
irreducible sofic shift,5 a property guaranteed in Algorithm 2 by the cyc(·) operation,6 Hopcroft’s
algorithm will find its unique minimal right-resolving presentation [BKM85, Jon96]. The runtime
remains efficient at O(s · |A| log s), where s is the number of states in the original right-resolving
presentation. Figure 4.4 shows the minimization of the example in Figure 3.1, which results in the
classic form of the even shift; one can easily verify that the two graphs represent the same sofic shift.
Applying the minimization technique to the sample Hénon result in Theorem 4.1 yields an edge
presentation with only 251 vertices and 383 edges (Figure A.3(R)), a reduction in size of roughly
35%.

In addition to reducing the number of states in a sofic shift presentation, one could also try to
reduce the number of symbols. The process of amalgamating symbols a and b to a new symbol [ab]
corresponds to taking regionsNa andNb and replacing them with a single regionN[ab] = Na∪Nb. As
a side effect, one loses some information in the resulting shift with regard to itineraries of trajectories
(for a point containing symbol [ab], it is no longer clear which of Na or Nb it passes through), but

5A subshift Σ is irreducible if for every u, v ∈ B(Σ) there is some w ∈ B(Σ) such that uwv ∈ B(Σ). In the case
of sofic shifts, irreduciblility is equivalent to the existence of an irreducible (strongly-connected) presentation.

6Technically, cyc(·) may return a disconnected graph, each component of which presents an irreducible sofic
shift. In practice, we may simply minimize each presentation individually, or choose the component with the highest
entropy, depending on the application.

23

of course this information remains in the original presentation. Not all symbol amalgamations
yield a conjugate subshift, and the problem of determining how many amalgamations are possible
while preserving conjugacy is a challenging one. In fact, this problem is NP-hard (computationally
intractable for large instances) even for SFTs [Fro17], so in practice we simply perform a brute-
force search with a few heuristics to find a smaller conjugate subshift (cf. [Fro14, Algorithm 1]).
Amalgamations can significantly reduce the number of symbols needed to express a subshift, but are
especially useful when trying to compare the produced subshift to another, as in [Fro14, Theorem
5.2].

For our final example, we show a sample result for the Kot-Schaffer model that uses symbol
amalgamation to present a simplified, conjugate shift to one produced by Algorithm 2. The isolating
neighborhood of the index pair from [DK13] had 61167 boxes (with 1031 additional exit set boxes)
in 16 disjoint regions; see Figure 4.5(L). The vertex presentation of the sofic shift resulting from
Algorithm 2, which happens to be an SFT in this case, is shown in Figure 4.5(R) along with an
overlaid amalgamation down to just 4 symbols {a, b, c, d}. As the shifts are conjugate, both yield
the same rigorous lower bound on the topological entropy of 0.2406.

24

1

2 34 5 6 7

89101112 13 14

15

16

a

b

c

d

Fig. 4.5. The index pair from [DK13] (top) along with the resulting sofic shift computed from Algorithm 2
(bottom). The amalgamation of the symbols of the sofic shift is shown with dashed lines surrounding the four final
symbols, which correspond to the larger regions above labeled a, b, c, d.

REFERENCES

[AKK+09] Zin Arai, William Kalies, Hiroshi Kokubu, Konstantin Mischaikow, Hiroe Oka, and Pawe lPilarczyk, A
database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl.
Dyn. Syst. 8 (2009), no. 3, 757–789. MR 2533624

[BKM85] Mike Boyle, Bruce Kitchens, and Brian Marcus, A note on minimal covers for sofic systems, Proceed-
ings of the American Mathematical Society (1985), 403–411.

[Bow71] Rufus Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc.
154 (1971), 377–397. MR MR0282372 (43 #8084)

[Boy00] Mike Boyle, Algebraic aspects of symbolic dynamics, Topics in symbolic dynamics and applications
(Temuco, 1997), London Math. Soc. Lecture Note Ser 279 (2000), 57–88.

[Col04] Pieter Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,
Dyn. Syst. 19 (2004), no. 1, 1–39. MR 2038270

[Col05] , Entropy-minimizing models of surface diffeomorphisms relative to homoclinic and heteroclinic
orbits, Dyn. Syst. 20 (2005), no. 4, 369–400. MR 2182474

[Con78] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in
Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR MR511133

25

(80c:58009)
[Dev89] Robert L. Devaney, An introduction to chaotic dynamical systems, second ed., Addison-Wesley Studies

in Nonlinearity, Addison-Wesley Publishing Company Advanced Book Program, Redwood City,
CA, 1989. MR MR1046376 (91a:58114)

[DFT08] Sarah Day, Rafael Frongillo, and Rodrigo Treviño, Algorithms for rigorous entropy bounds and symbolic
dynamics, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 4, 1477–1506. MR 2470974 (2010b:37023)

[DJM04] S. Day, O. Junge, and K. Mischaikow, A rigorous numerical method for the global analysis of infinite-
dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst. 3 (2004), no. 2, 117–160
(electronic). MR MR2067140

[DJM05] , Towards automated chaos verification., Proceeding of Equadiff 2003 (2005), 157–162.
[DK13] Sarah Day and William D. Kalies, Rigorous computation of the global dynamics of integrodifference

equations with smooth nonlinearities, SIAM J. Numer. Anal. 51 (2013), no. 6, 2957–2983. MR
3124898

[Fro14] Rafael Frongillo, Topological Entropy Bounds for Hyperbolic Plateaus of the Henon Map, SIAM Un-
dergraduate Research Online 7 (2014), 142–161.

[Fro17] , Optimal state amalgamation is NP-hard, Ergodic Theory and Dynamical Systems (2017),
1–13.

[FT12] Rafael Frongillo and Rodrigo Trevino, Efficient automation of index pairs in computational conley
index theory, SIAM Journal on Applied Dynamical Systems 11 (2012), no. 1, 82–109.

[Gal02] Z. Galias, Obtaining rigorous bounds for topological entropy for discrete time dynamical systems,
Proc. Int. Symposium on Nonlinear Theory and its Applications, NOLTA’02 (Xi’an, PRC), 2002,
pp. 619–622.

[Hop71] John Hopcroft, An n log n algorithm for minimizing states in a finite automaton, Theory of machines
and computations, Elsevier, 1971, pp. 189–196.

[Jon96] Nataa Jonoska, Sofic shifts with synchronizing presentations, Theoretical Computer Science 158
(1996), no. 1, 81–115.

[KMM04] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek, Computational homology, Applied
Mathematical Sciences, vol. 157, Springer-Verlag, New York, 2004. MR 2028588

[KMV14] William D. Kalies, Konstantin Mischaikow, and Robert C. A. M. Vandervorst, Lattice structures for
attractors I, J. Comput. Dyn. 1 (2014), no. 2, 307–338. MR 3415257

[KMV16] , Lattice structures for attractors II, Found. Comput. Math. 16 (2016), no. 5, 1151–1191. MR
3552843

[KS86] Mark Kot and William M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci. 80 (1986),
no. 1, 109–136. MR 88a:92030

[Kwa00] Jaroslaw Kwapisz, Cocyclic subshifts, Mathematische Zeitschrift 234 (2000), no. 2, 255–290.
[Kwa04] , Transfer operator, topological entropy and maximal measure for cocyclic subshifts, Ergodic

Theory and Dynamical Systems 24 (2004), no. 4, 1173–1197.
[LM95] Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge Uni-

versity Press, Cambridge, 1995. MR 1369092 (97a:58050)
[MM95] Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer-assisted proof,

Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66–72. MR 1276767
[MM98] , Chaos in the Lorenz equations: a computer assisted proof. II. Details, Math. Comp. 67 (1998),

no. 223, 1023–1046. MR 1459392
[MM02] , Conley index, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002,

pp. 393–460. MR MR1901060 (2003g:37022)
[MMS01] Konstantin Mischaikow, Marian Mrozek, and Andrzej Szymczak, Chaos in the Lorenz equations: a

computer assisted proof. III. Classical parameter values, J. Differential Equations 169 (2001),
no. 1, 17–56, Special issue in celebration of Jack K. Hale’s 70th birthday, Part 3 (Atlanta,
GA/Lisbon, 1998). MR 1808460

[NBGM08] S. Newhouse, M. Berz, J. Grote, and K. Makino, On the estimation of topological entropy on surfaces,
Discrete and Continuous Math 469 (2008), 243–270.

[Rob95] Clark Robinson, Dynamical systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL,
1995, Stability, symbolic dynamics, and chaos. MR MR1396532 (97e:58064)

[RS88] Joel W. Robbin and Dietmar Salamon, Dynamical systems, shape theory and the Conley index, Ergodic
Theory Dynam. Systems 8sp ∗ (1988), no. Charles Conley Memorial Issue, 375–393. MR MR967645
(89h:58094)

[Szy95] Andrzej Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math. 148
(1995), no. 1, 71–90. MR MR1354939 (96m:58154)

26

[Szy97] , A combinatorial procedure for finding isolating neighbourhoods and index pairs, Proc. Roy.
Soc. Edinburgh Sect. A 127 (1997), no. 5, 1075–1088. MR MR1475647 (98i:58151)

[UW04] Ilie Ugarcovici and Howard Weiss, Chaotic dynamics of a nonlinear density dependent population
model, Nonlinearity 17 (2004), no. 5, 1689–1711. MR 2086145

27

Appendix A. Additional Examples.

{
5,

[
0
0
1
0

]}

{
2,

[
0
0
0
1
1

]}
{

5,

[
0
1
0
1

]}

{3,[1]}

{
4,
[

0
1
0

]}
{6,[1]}

{1,[1
1]}

{1,[0
1]}

{
2,

[
1
−1
−1
0
0

]}

{
5,

[
1
1
0
1

]}

{
4,
[

1
0
−1

]}

Fig. A.1. The vertex presentation of the sofic shift given by applying Algorithm 2 to the labeled Conley index
representative from Figure 2.5. Each node is a pair {symbol, matrix image space}, with label equal to the symbol.
One can clearly identify the original periodic orbits in the sofic shift, corresponding to points 4251, 435251, and
4352516, respectively.

N0 N1

[
1 0 0
0 1 1
0 1 0

] [
1 0 0
0 0 1
0 0 0

] [
1 0 0
0 1 0
0 0 1

][
1 0 0
0 1 0
0 1 0

]
{

0,
[

1
0
0

]} {
1,
[

1
0
0

]}
Fig. A.2. A simple example where G(∞) from Algorithm 1 contains countably infinitely many nodes, yet

starting from smaller image spaces (right) presents Σ(M, `), here the full 2-shift, in just two nodes. Specifically,

G(∞) contains nodes of the form {0,
[
1 0 0
0 Fn+1 Fn
0 Fn Fn−1

]
} for all n ≥ 1, where Fn is the nth Fibonacci number.

28

215

16360

148

17

143

115

33
233

158

263

8

98

201

22

20
5

148

239

34

175

293

189

66

280

93

222

300

25

97

261
269

70

174

271

16

124

37

150

203

71

132

30

168

125

56

152

24

154

208

52

123

299

21
3

149

121

169

96

237 210

207

20
0

292 123

47

219 12
2

290

32
1

240

182
69

133

65

19
6

10
7

46

114

6

294

23
6

75

28
9

79

3

182

191 83

295
110

111

18

17
1

82

131

266

303

42

29
86

112

81

6

141

204

255

11
3

246

264

35

28

122

283

89

75

311

190

309

177

7

31
7

146
20

148

159

227

192

265

161

85

221

74

139

272

38

50

5

187

315

99

72

105

173

28
2

30
4

92

225

64

14

54

119

26
7

11

27
5

151

25
8

41

242

330

2

27

24
5

104

235

135

310

252

218

162

43

57

262

19
8

24
1

281

24
9

273

301

26

276

19
9

179

84

298

73

230 331

100

325

324

257

234

243

103

58

332

157

247

76

144

222

229

14
7

316

32
6

277

87

291
336

12
8

127

112

244

188

118

18
5

323

202

217

21

176

190

189

231

25
1

2
120

140

40

206

108

121

4

62

37

107

5

49

19

153

278

297

3

320

329

254

183

53

313

4

44

11
6

1

197

33
3

136

274334

312

28
5

339

318

5

250

284

88

194

63

186

254

78

216

130

172

170

308

121

327

6

288

48

220

302

38

248

165

25
3

160

319

228

107

167

7

0

111

36

126

338

109

255

59

178

142

10
2

90

296

193

101

22
3

193

306

0

117

337

10

221
238

260

211

335

91

15
5

13
7

31

180

224

13

270

134

68

15

305

95

259

32

226

12 328

75

61
39

181
212

279

111

214

184

1

35

80
166

9

55

106

12
4

256

341

172

194

31
4

129

14
5

268

307

195

67

23
209

35

34
051

77

172

156

138

94

164

232

322

287
286

45

36

200 400 600 800 1000 1200 1400
200

0

200

400

600

800

1000

1200

Fig. A.3. The edge presentation resulting in minimizing the vertex presentation in Figure 4.2 for Theorem 4.1.
The thick segment at the end of an edge denotes its direction. This minimized presentation has 251 vertices and
383 edges, significantly fewer than the 388 vertices and 586 edges of the vertex presentation.

29

Appendix B. Omitted Algorithms.

Algorithm B.1 Compute the first return times of all nodes in a directed graph.

Input: Directed graph G
Output: An array C of sets, with C[k] ⊆ V (G) being the subset of vertices of G with first return

time k
We will invoke this routine with G being the enclosure F with vertices V (G) = G, the grid
elements, and edges E(G) = {(g1, g2) ∈ G × G | g2 ∈ F(g1)}.

1: procedure FirstReturnTimes(G)
2: C ← ∅
3: for vertices v in V (H) do
4: H ′ ← H with vertex v copied to v′, with the same neighborhood
5: D ← BFS(H ′, v) # Discover times of breadth-first search starting from v
6: k ← D[v′] # First return time of vertex v
7: C[k] ← C[k] ∪ {v}
8: return C

Algorithm B.2 Verify periodic orbits from a collection of candidate boxes.

Input: Enclosure F , grid adjacency graph A, first return time array C
Output: An array P of isolating neighborhoods of verified periodic orbits

1: procedure VerifyPeriodicOrbits(F , A, C)
2: P ← ∅
3: for periods k = 1, . . . , length(C) do
4: while C[k] 6= ∅ do
5: v ← an arbitrary element of C[k]
6: S ← FindCycle(v, F , k) # A length-k cycle in F through v
7: if S = ∅ then
8: C[k] ← C[k] \ {v}
9: else

10: N ← GrowIsolatingNeighborhood(S, F , A)
11: (M, `) ← ConleyIndexRepresentative(N , F , A)
12: G ← SemiConjugateSoficShift(M , `, 10000)
13: if G presents the subshift of a k-cycle then
14: P ← P ∪ {N} # In practice, we also record the period k
15: C[k] ← C[k] \ N
16: return P

30

Algorithm B.3 Simple union approach to growing isolating neighborhoods from verified periodic
orbits.
Input: Enclosure F , grid adjacency graph A, array P of verified periodic orbits
Output: Vertex presentation G of a semiconjugate sofic shift

1: procedure SimpleUnionApproach(F , A, P)
2: S ← ∪S∈PS # Union of all grid elements in P
3: N ← GrowIsolatingNeighborhood(S, F , A)
4: (M, `) ← ConleyIndexRepresentative(N , F , A)
5: G ← SemiConjugateSoficShift(M , `, 10000)
6: return G

Algorithm B.4 Heuristic to find a subset of verified orbits of high entropy.

Input: Enclosure F , grid adjacency graph A, array P of verified periodic orbits
Output: Vertex presentation Gmax of a semiconjugate sofic shift (of high entropy)

1: procedure FindTippingPoint(F , A, P)
2: (klo, khi) ← (1,|P |)
3: (hmax, kmax, Gmax) ← (0, 1, ∅)
4: while klo ≤ khi do
5: k ← b (klo + khi)/2 c
6: G ← SimpleUnionApproach(F , A, P [1..k]) # First k periodic orbits
7: h ← ComputeEntropy(ΣG) # Log of the spectral radius of

the adjacency matrix of G
8: if h > hmax then
9: (hmax, kmax, Gmax) ← (h, k,G)

10: if k > kmax and h < hmax then
11: khi ← k − 1
12: else
13: klo ← k + 1

14: return Gmax

31

