Matrices as Babushka dolls: from the Conley index to symbolic dynamics

Rafael Frongillo University of California at Berkeley

Joint work with: Sarah Day, Rodrigo Trevino

(Cornell REU Summer 2006, and beyond)

Overview

Given the Conley index, we want symbolic dynamics

Compute a symbolic dynamical system which is semi-conjugate

Take index map and perform various operations yielding progressively smaller matricies

This procession of "nested" matricies is a lot like...

Babushka dolls: a (perhaps) useful analogy

The dolls:

1. index map
2. index map with transient generators removed
3. induced symbol system on regions
4. verified symbol system
5. amalgamated symbol system

$1 \rightarrow 2$: Removing transient generators

- Purpose: simplify the index map representative
- Intuition: taking the 'least common denominator’ of the shift equivalence class
- Algorithm: view the index map as a graph and remove nodes not in or between strongly-connected components

$2 \rightarrow 3$: Contract regions

Given regions R_{1}, \ldots, R_{n}, create a graph T :

$$
\begin{gathered}
V(T)=[n] \\
E(T)=\left\{(i, j) \mid R_{i} \text { maps to } R_{j}\right\},
\end{gathered}
$$

where "maps" means there are generators that map that way

Natural first guess at a symbol map σ_{T}

$3 \rightarrow 4:$ Compute semi-conjugacy using the Conley index

A symbolic dynamical system σ_{T} is semi-conjugate to f if

$$
\begin{aligned}
& \operatorname{Con}\left(\left.\left.f\right|_{R_{s_{k}}} \circ \cdots \circ f\right|_{R_{s_{1}}}\right) \text { is not nilpotent } \\
& \text { for all cycles } s_{1}, \ldots, s_{k} \text { in } T
\end{aligned}
$$

Problem: infinite number of computations

Solution: look for patterns

We say a path $p=\left(p_{1}, \ldots, p_{k}\right)$ reduces to a shorter path $q=\left(q_{1}, \ldots, q_{k^{\prime}}\right)$ if

$$
\operatorname{Con}\left(\left.\left.f\right|_{R_{p_{1}}} \circ \cdots \circ f\right|_{R_{p_{k}}}\right)=\operatorname{Con}\left(\left.\left.f\right|_{R_{q_{1}}} \circ \cdots \circ f\right|_{R_{q_{k_{k}}}}\right) \neq 0,
$$

If for some k, all paths of length k reduce to shorter paths then σ_{T} is semi-conjugate to f

If we encounter paths yielding a trivial Conley index, we have to cut an edge of T from this path

Algorithm to compute semi-conjugacy

1. $\mathrm{Fix} k \approx 30$
2. Collect 'bad edge sets': edges of paths that
(a) have length at most k and have trivial Conley index
(b) are of length k and do not reduce (assume the worst)
3. Cut an edge of T from each bad edge set

Exercise:

No path remaining in T corresponds to a nilpotent matrix (any prefix of such a path is trivial or does not reduce)

$4 \rightarrow 5$: state amalgamations

Find a smaller representative in the conjugacy class of σ_{T} Combine (amalgamate) two nodes if they 'behave the same’

same preimage
disjoint images

same image
disjoint preimages

Finding smallest representative is NP-complete (i.e., hard to compute)

Greedy algorithm fails:

One choice of amalgamation

No further amalgamations

A better choice of amalgamation

An example

Index map

Possible cycle $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow a$.

Index map with transient generators identified

preimage generators in blue, image generators in red

Index map with transient generators removed

Unable to prove $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow a$ cycle.

Map induced on regions of the phase space

An unverifiable cycle!

Edge set to cut: $\{(a, c),(c, a)\}$
Cut (a, c), since otherwise entropy is zero

Resulting symbolic dynamical system

We now have a semi-conjugacy

Entropy of $f \geq$ entropy of $\sigma_{T}=0.4812 \ldots$

Amalgamation!

a and c : same image and disjoint preimages

ERROR: slide index out of range

possible cause: talk is over

