Derivatives	Black-Scholes	Robust Pricing	Analysis	Future

Minimax Option Pricing: How Robust is Black-Scholes?

Rafael Frongillo

Department of Computer Science University of California at Berkeley

July 20, 2012

Joint work with Jake Abernethy and Andre Wibisono

Der	ivat	tive	

Black-Schole:

Robust Pricing

Analysis

Future 000000

Jake Abernethy now at UPenn

Andre Wibisono in 1225 this summer!

Financial	Derivatives			
Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future

A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out g(S(T)) at time T S(t) is the value of S at time t

E.g. cos(gas price on Aug 1)

Financial	Derivatives			
Derivatives ●oo	Black-Scholes	Robust Pricing	Analysis	Future

A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out g(S(T)) at time T S(t) is the value of S at time t

E.g. cos(gas price on Aug 1)

Financial	Derivatives			
Derivatives ●oo	Black-Scholes	Robust Pricing	Analysis	Future

A new financial instrument which is a function of old ones.

Class of derivatives we consider:

- Expiration date T (typically 1)
- Base stock/asset S
- Derivative pays out g(S(T)) at time T S(t) is the value of S at time t

E.g. cos(gas price on Aug 1)

Note: will use "option" and "derivative" interchangably

Derivatives oo●	Black-Scholes	Robust Pricing	Analysis oooooo	Future
How to Price	ce?			

What is a derivative g worth?

Derivatives	Black-Scholes ●ooooo	Robust Pricing	Analysis oooooo	Future
Black-Sc	holes Pricing			

Fischer Black and Myron Scholes, 1973

- Intuition: price of derivative is cost of implementing it with existing instruments
- The algorithm which implements a derivative is a replication strategy
- The replication strategy has a fixed initial investment, which should be precisely the price of the derivative

Idea: As stock *S* fluctuates, use an algorithm *A* to "hedge" the option by buying and selling *S*

Result: guarantee the payoff of the option, minus a fixed cost c

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future
Black-Sc				

- No arbitrage opportunities
- 0% interest borrowing
- Can trade continuously
- No transaction fees, no dividend payments, etc
- Stock prices follow Geometric Brownian Motion (GBM)

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future
Black-Sc	holes Assum	ntions		

- No arbitrage opportunities
- 0% interest borrowing
- Can trade continuously
- No transaction fees, no dividend payments, etc
- Stock prices follow Geometric Brownian Motion (GBM)

Derivatives	Black-Scholes	Robust Pricing	Analysis oooooo	Future
Geometric I	Brownian Mo	tion		

Geometric Brownian Motion

Derivatives 000	Black-Scholes ○○○●○○	Robust Pricing	Analysis oooooo	Future
Geometric E	Brownian Motio	on		

Geometric Brownian Motion

Let W(t) be Brownian Motion with drift μ and volatility σ^2

- $\blacksquare W(0) = 0$
- W(t) W(s) and W(u) W(t) are indep. for s < t < u

 $\blacksquare W(t) - W(s) \sim N(\mu(t-s), \sigma^2(t-s))$

G(t) is GBM $\iff log(G(t))$ is Brownian Motion

Derivatives 000	Black-Scholes ○○○●○○	Robust Pricing	Analysis oooooo	Future
Geometric E	Brownian Motio	on		

Geometric Brownian Motion

Let W(t) be Brownian Motion with drift μ and volatility σ^2

 $\blacksquare W(0) = 0$

■ W(t) - W(s) and W(u) - W(t) are indep. for s < t < u

 $\blacksquare W(t) - W(s) \sim N(\mu(t-s), \sigma^2(t-s))$

G(t) is GBM $\iff log(G(t))$ is Brownian Motion

Derivatives	Black-Scholes ooooeo	Robust Pricing	Analysis 000000	Future
Delta-hedge	e Portfolio			

Given option/derivative g:

- Let V(S, t) be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio Hold $\$ \frac{\partial V}{\partial S}(t)$ of stock @ time t

Now solve for *V* using the no-arbitrage condition:

$$\frac{\partial V}{\partial S} - \frac{1}{2}S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

Solution is:

 $V(S, t) = \mathbb{E}_{G \sim \text{GBM}}[g(SG(T - t))]$

Derivatives	Black-Scholes ○○○○●○	Robust Pricing	Analysis oooooo	Future
Delta-hedge	e Portfolio			

Given option/derivative g:

- Let V(S, t) be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio Hold $\frac{\partial V}{\partial S}(t)$ of stock @ time t

Now solve for V using the no-arbitrage condition:

Stochastic PDE from Ito's Lemma:

$$\frac{\partial V}{\partial S} - \frac{1}{2}S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

Solution is:

 $V(S,t) = \mathbb{E}_{G\sim \text{GBM}}[g(SG(T-t))]$

Derivatives	Black-Scholes oooo●o	Robust Pricing	Analysis 000000	Future
Delta-hedge	e Portfolio			

Given option/derivative g:

- Let V(S, t) be the value of the option at t
- Let $\frac{\partial V}{\partial S}$ be the replication portfolio Hold $\frac{\partial V}{\partial S}(t)$ of stock @ time t

Now solve for V using the no-arbitrage condition:

Stochastic PDE from Ito's Lemma:

$$\frac{\partial V}{\partial S} - \frac{1}{2}S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

Solution is:

$$V(S, t) = \mathbb{E}_{G \sim \text{GBM}}[g(SG(T - t))]$$

Derivatives 000	Black-Scholes ○○○○○●	Robust Pricing	Analysis 000000	Future
The Black-S	Scholes Price			

Price of option is therefore:

$V(S,0) = \mathbb{E}[g(S \operatorname{GBM}(T))]$

Some surprises:

- Replication succeeds with probability 11
- GBM above has drift 0 not μ !

Derivatives 000	Black-Scholes	Robust Pricing	Analysis 000000	Future
The Black-S	choles Price			

Price of option is therefore:

```
V(S,0) = \mathbb{E}[g(S \operatorname{\mathsf{GBM}}(T))]
```

Some surprises:

- Replication succeeds with probability 1!
- GBM above has drift 0 not μ !

Derivatives 000	Black-Scholes	Robust Pricing	Analysis 000000	Future
The Black-S	choles Price			

Price of option is therefore:

```
V(S,0) = \mathbb{E}[g(S \operatorname{\mathsf{GBM}}(T))]
```

Some surprises:

- Replication succeeds with probability 1!
- GBM above has drift 0 not µ!

Derivatives	Black-Scholes	Robust Pricing ●oo	Analysis 000000	Future
Beyond Black-Scholes				

Problems with Black-Scholes

- Continuous-time trading
- Assumes GBM!

Why stochastic prices? Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour '08]

Derivatives 000	Black-Scholes	Robust Pricing ●○○	Analysis 000000	Future
Beyond Blac	ck-Scholes			

Problems with Black-Scholes

Continuous-time trading

Assumes GBM!

Why stochastic prices?

Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour '08]

Derivatives 000	Black-Scholes	Robust Pricing ●○○	Analysis 000000	Future
Beyond Blac	ck-Scholes			

Problems with Black-Scholes

Continuous-time trading

Assumes GBM!

Why stochastic prices?

Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour '08]

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

An *n*-round game between Investor and Nature
 Discrete-time trades at *t* = *m*/*n*, *m* ∈ [*n*]

Derivatives	Black-Scholes	Robust Pricing ○●○	Analysis 000000	Future
An Option	n-Pricing Gan	ne		

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

A ∈ A is the replication algorithm (Investor) A chooses \$∆_m to invest in S at time t = m/n

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

A ∈ A is the replication algorithm (Investor)
 A chooses \$Δ_m to invest in S at time t = m/n

Derivatives	Black-Scholes	Robust Pricing ○●○	Analysis 000000	Future
An Optior	-Pricing Gan	ne		

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

■ $X \in \mathcal{X}$ is the price path (Nature)

T_m is the fluctuation at time t = m/n:

$$X\left(\frac{m}{n}\right) = X\left(\frac{m-1}{n}\right)\left(1+T_m\right)$$

Derivatives	Black-Scholes	Robust Pricing ○●○	Analysis 000000	Future
An Optio	n-Pricing Gan	ne		

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

X ∈ X is the price path (Nature)
 T_m is the fluctuation at time t = m/n:

$$X\left(\frac{m}{n}\right) = X\left(\frac{m-1}{n}\right)(1+T_m)$$

Derivatives	Black-Scholes	Robust Pricing ○●○	Analysis 000000	Future
An Optic	on-Pricing Gan	ne		

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

Option payout

Earnings of Investor

Difference = "Regret"

ື

Derivatives Black-Scholes coordinate Pricing Coordi

$$\inf_{A\in\mathcal{A}} \sup_{X\in\mathcal{X}} \mathbb{E}\left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

Option payout

Earnings of Investor

Difference = "Regret"

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

- Option payout
- Earnings of Investor
- Difference = "Regret"

000	Black-Scholes 000000	Robust Pricing ○○●	Analysis	Future		
Value of	Value of the Game					

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

Value of the game ≥ option price! Upper bound because of the worst-case assumptions

Interested continuous trading limit as $n
ightarrow \infty$

Derivatives	Black-Scholes	Robust Pricing ○○●	Analysis 000000	Future
Value of t	he Game			

$$\inf_{A\in\mathcal{A}} \sup_{X\in\mathcal{X}} \mathbb{E}\left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

Value of the game ≥ option price! Upper bound because of the worst-case assumptions

Interested continuous trading limit as $n \rightarrow \infty$

Constrai	ning Naturo			
Derivatives	Black-Scholes	Robust Pricing	Analysis	Future

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

What price paths \mathcal{X} can Nature choose from?

We require:

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

c is the "volatility"

Derivatives	Black-Scholes	Robust Pricing	Analysis ●ooooo	Future
Constrai	ning Nature			

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_{m} \Delta_{m} \right]$$

What price paths \mathcal{X} can Nature choose from?

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

c is the "volatility"

Derivatives	Black-Scholes	Robust Pricing	Analysis ●ooooo	Future
Constrai	ning Nature			

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_{m} \Delta_{m} \right]$$

What price paths \mathcal{X} can Nature choose from?

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

c is the "volatility"

By Sion's Minimax Theorem, we can swap inf and sup!

Derivatives	Black-Scholes	Robust Pricing	Analysis o●oooo	Future
Step I: D	uality			

By Sion's Minimax Theorem, we can swap inf and sup!

Derivatives	Black-Scholes	Robust Pricing	Analysis oo●ooo	Future
Step II: N	Martingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$

Investor can choose $\Delta_m \rightarrow \pm \infty$

Nature would have unbounded loss!

Derivatives	Black-Scholes	Robust Pricing	Analysis ooeooo	Future
Step II: N	Martingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

- Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$
 - Investor can choose $\Delta_m \rightarrow \pm \infty$
- Nature would have unbounded loss!

Derivatives	Black-Scholes	Robust Pricing	Analysis ooeooo	Future
Step II: N	Martingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

- Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$
- Investor can choose $\Delta_m \rightarrow \pm \infty$
- Nature would have unbounded loss!

Derivatives	Black-Scholes	Robust Pricing	Analysis ooeooo	Future
Step II: N	Martingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} T_m \Delta_m \right]$$

- Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$
- Investor can choose $\Delta_m \rightarrow \pm \infty$
- Nature would have unbounded loss!

Derivatives	Black-Scholes	Robust Pricing	Analysis oo●ooo	Future
Step II: N	<i>I</i> artingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} \mathcal{T}_{m} \Delta_{m} \right]$$

- Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$
- Investor can choose $\Delta_m \rightarrow \pm \infty$
- Nature would have unbounded loss!

000	000000	000	000000	000000
Step II: I	vlartingale			

$$\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E} \left[g(X(1)) - \sum_{m=1}^{n} \mathcal{T}_{m} \Delta_{m} \right]$$

- Assume not: $\mathbb{E}[T_m|T_{m-1}] \neq 0$
- Investor can choose $\Delta_m \rightarrow \pm \infty$
- Nature would have unbounded loss!

Derivatives 000	Black-Scholes	Robust Pricing	Analysis ○○○●○○	Future
Step III: Ma	x Variance			

$\sup_{\substack{X \in \mathcal{X} \\ \{T_m\} \text{ mtg.}}} \mathbb{E} \left[g(X(1)) \right]$

When g is convex, Nature wants to maximize variance

$$\mathbb{E}[T_m^2|T_{m-1}] = \frac{c}{n}$$

Similar reasoning to the Maximum Principle

Derivatives 000	Black-Scholes	Robust Pricing	Analysis ○○○●○○	Future
Step III: Max	x Variance			

$$\sup_{\substack{X \in \mathcal{X} \\ \{T_m\} \text{ mtg.}}} \mathbb{E} \left[g(X(1)) \right]$$

When g is convex, Nature wants to maximize variance

$$\mathbb{E}[T_m^2|T_{m-1}] = \frac{c}{n}$$

Similar reasoning to the Maximum Principle

Derivatives 000	Black-Scholes	Robust Pricing	Analysis ○○○●○○	Future
Step III: Max	x Variance			

$$\sup_{\substack{X \in \mathcal{X} \\ \{T_m\} \text{ mtg.}}} \mathbb{E} \left[g(X(1)) \right]$$

When g is convex, Nature wants to maximize variance

$$\mathbb{E}[T_m^2|T_{m-1}] = \frac{c}{n}$$

Similar reasoning to the Maximum Principle

Derivatives	Black-Scholes	Robust Pricing	Analysis oooo●o	Future
Step IV: 0	Central Limit	Theorem		

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem As $n \to \infty$, $X_n^* \xrightarrow{d} GBM$

Corollary

$$As n \to \infty, \ \mathbb{E}\left[g(X_n^*(1))\right] \longrightarrow \mathbb{E}\left[g(GBM(1))\right]$$

Black-Scholes price!

Derivatives	Black-Scholes	Robust Pricing	Analysis ○○○○●○	Future		
Step IV: Central Limit Theorem						

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem $As \ n \to \infty, \ X_n^* \xrightarrow{d} GBM$

Corollary

As
$$n \to \infty$$
, $\mathbb{E}\left[g(X_n^*(1))\right] \longrightarrow \mathbb{E}\left[g(GBM(1))\right]$

Black-Scholes price!

Derivatives	Black-Scholes	Robust Pricing	Analysis oooo●o	Future
Step IV: Central Limit Theorem				

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X_n^* \xrightarrow{d} GBM$

Corollary

$$As n \to \infty, \ \mathbb{E}\left[g(X_n^*(1))\right] \longrightarrow \mathbb{E}\left[g(GBM(1))\right]$$

Value of the game Black-Scholes price!

Derivatives	Black-Scholes	Robust Pricing	Analysis ooooooo	Future
Step IV: Central Limit Theorem				

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X_n^* \xrightarrow{d} GBM$

Corollary

$$As n \to \infty, \ \mathbb{E}\left[g(X_n^*(1))\right] \longrightarrow \mathbb{E}\left[g(GBM(1))\right]$$

Value of the game Black-Scholes price!

Derivatives 000	Black-Scholes	Robust Pricing	Analysis ooooeo	Future
Step IV: Central Limit Theorem				

Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As $n \to \infty$, $X_n^* \xrightarrow{d} GBM$

Corollary

As
$$n \to \infty$$
, $\mathbb{E}\left[g(X_n^*(1))\right] \longrightarrow \mathbb{E}\left[g(GBM(1))\right]$

Value of the game Black-Scholes price!

	t Lloppopod2		000000
What Jus	t Happened?		

Black-Scholes Option Pricing

Assume stock ~ GBM

Construct optimal replication strategy

 $\mathsf{Price}(g) = \mathbb{E}[g(\mathsf{GBM}(1))]$

Minimax Option Pricing

Assume stock is adversarial

Analyze dual of the game

■ Worst-case price path → GBM

 $Price(g) = \mathbb{E}[g(\text{GBM}(1))]$

	t Lloppopod2		000000
What Jus	t Happened?		

Black-Scholes Option Pricing

Assume stock ~ GBM

Construct optimal replication strategy

 $Price(g) = \mathbb{E}[g(GBM(1))]$

Minimax Option Pricing

Assume stock is adversarial

Analyze *dual* of the game

■ Worst-case price path → GBM

 $Price(g) = \mathbb{E}[g(\mathsf{GBM}(1))]$

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future •oooooo
Back to I	DMK			

Our constraint on Nature:

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

[DeMarzo, Kremer, Mansour '08] use a *cumulative* constraint:

$$\sum_{m=1}^{n} \mathbb{E}[T_m^2 | T_{m-1}] \le c$$

Weaker constraint

Allows for price jumps

GBM is continuous w.p. 1

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future •oooooo
Back to	DMK			

Our constraint on Nature:

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

[DeMarzo, Kremer, Mansour '08] use a *cumulative* constraint:

Γ

$$\sum_{m=1}^n \mathbb{E}[T_m^2 | T_{m-1}] \le c$$

Weaker constraint

Allows for price jumps

GBM is continuous w.p. 1

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future •oooooo
Back to	DMK			

Our constraint on Nature:

$$\mathbb{E}[T_m^2|T_{m-1}] \le \frac{c}{n}$$

[DeMarzo, Kremer, Mansour '08] use a *cumulative* constraint:

$$\sum_{m=1}^n \mathbb{E}[T_m^2 | T_{m-1}] \le c$$

- Weaker constraint
- Allows for price jumps

GBM is continuous w.p. 1

From [DeMarzo, Kremer, Mansour '08]:

000	Black-Scholes	Robust Pricing	Analysis	Future ○○●○○○○
Some Sr	peculation			

We believe:

$$X_n^* \not\rightarrow \text{GBM}$$
$$X_n^*(1) \rightarrow \text{GBM}(1)$$

Hence, we would still obtain the Black-Scholes price!

Proof ideas:

- support(T_m) = 2 in dual game
- Optimal Δ_m balances these two points
- Then Δ_m is a discrete derivative of V
- This V approaches Black-Scholes V, and Δ_m approaches the delta-hedge portfolio!

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future oo●oooo
Some Sr	peculation			

We believe:

$$X_n^* \not\rightarrow \text{GBM}$$
$$X_n^*(1) \longrightarrow \text{GBM}(1)$$

Hence, we would still obtain the Black-Scholes price!

Proof ideas:

- support(T_m) = 2 in dual game
- Optimal Δ_m balances these two points
- Then Δ_m is a discrete derivative of V
- This V approaches Black-Scholes V, and Δ_m approaches the delta-hedge portfolio!

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future
New Ana	alvsis			

Consider the value function for this game:

$$V_n(S, n) := g(S)$$

$$V_n(S, m) := \inf_{\Delta \in \mathbb{R}} \sup_{t \in [-z, z]} \Delta t + V_n \Big(S(1+t), m-1 \Big)$$

And let $\Delta = \Delta(S, m)$ be the optimal investment for Investor

Lemma

If $\Delta = \Delta(S, m)$, then Nature's sup_t is achieved by at least two points $t_1, -t_2$ with $t_1, t_2 > 0$

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future ooo●oo
New Ana	alvsis			

Consider the value function for this game:

$$V_n(S, n) := g(S)$$

$$V_n(S, m) := \inf_{\Delta \in \mathbb{R}} \sup_{t \in [-z, z]} \Delta t + V_n \Big(S(1+t), m-1 \Big)$$

And let $\Delta = \Delta(S, m)$ be the optimal investment for Investor

Lemma

If $\Delta = \Delta(S, m)$, then Nature's sup_t is achieved by at least two points $t_1, -t_2$ with $t_1, t_2 > 0$

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future
New Ana	alvsis			

Consider the value function for this game:

$$V_n(S, n) := g(S)$$

$$V_n(S, m) := \inf_{\Delta \in \mathbb{R}} \sup_{t \in [-z, z]} \Delta t + V_n \Big(S(1+t), m-1 \Big)$$

And let $\Delta = \Delta(S, m)$ be the optimal investment for Investor

Lemma

If $\Delta = \Delta(S, m)$, then Nature's sup_t is achieved by at least two points $t_1, -t_2$ with $t_1, t_2 > 0$

Derivatives	Black-Scholes	Robust Pricing	Analysis	Future
				0000000

By the Lemma, Δ must balance $V_n(S, m-1)$ at t_1 and $-t_2$:

$$V_n(S,m) = \Delta(S,m) t_1 + V_n \Big(S(1+t_1), m-1 \Big)$$

= $-\Delta(S,m) t_2 + V_n \Big(S(1-t_2), m-1 \Big)$

Solving for Δ :

$$\Delta(S,m) = \frac{V_n(S(1-t_2),m-1) - V_n(S(1+t_1),m-1)}{t_1 + t_2}$$

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!

Derivatives	Black-Scholes	Robust Pricing	Analysis	Future
				0000000

By the Lemma, Δ must balance $V_n(S, m-1)$ at t_1 and $-t_2$:

$$V_n(S,m) = \Delta(S,m) t_1 + V_n \Big(S(1+t_1), m-1 \Big)$$

= $-\Delta(S,m) t_2 + V_n \Big(S(1-t_2), m-1 \Big)$

Solving for Δ :

$$\Delta(S,m) = \frac{V_n(S(1-t_2),m-1) - V_n(S(1+t_1),m-1)}{t_1 + t_2}$$

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!

Derivatives	Black-Scholes	Robust Pricing	Analysis	Future
				0000000

By the Lemma, Δ must balance $V_n(S, m-1)$ at t_1 and $-t_2$:

$$V_n(S,m) = \Delta(S,m) t_1 + V_n \Big(S(1+t_1), m-1 \Big)$$

= $-\Delta(S,m) t_2 + V_n \Big(S(1-t_2), m-1 \Big)$

Solving for Δ :

$$\Delta(S,m) = \frac{V_n(S(1-t_2),m-1) - V_n(S(1+t_1),m-1)}{t_1 + t_2}$$

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future 00000ec
Martinga	ale??			

Plugging Δ back in:

$$V_n(S,m) = \frac{t_1}{t_1 + t_2} V_n\left(S(1 - t_2), m - 1\right) + \frac{t_2}{t_1 + t_2} V_n\left(S(1 + t_1), m - 1\right)$$

Introduce a random variable $T = \{$

w.p. $\frac{t_2}{t_1+t_2}$ No 2 w.p. $\frac{t_1}{t_1+t_2}$

Note $\mathbb{E}[T] = 0$

 $V_n(S,m) = \mathbb{E}_T \Big[V_n(S(1+T),m-1) \Big] \quad (!)$

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future 00000ec
Martinga	ale??			

Plugging Δ back in:

$$V_n(S,m) = \frac{t_1}{t_1 + t_2} V_n\left(S(1 - t_2), m - 1\right) + \frac{t_2}{t_1 + t_2} V_n\left(S(1 + t_1), m - 1\right)$$

Introduce a random variable
$$T = \begin{cases} t_1 & \text{w.p.} \frac{t_2}{t_1 + t_2} \\ -t_2 & \text{w.p.} \frac{t_1}{t_1 + t_2} \end{cases}$$
 Note $\mathbb{E}[T] = 0$

 $V_n(S,m) = \mathbb{E}_T \left[V_n(S(1+T),m-1) \right] \quad (!)$

Derivatives	Black-Scholes	Robust Pricing	Analysis 000000	Future
Martinga	ale??			

Plugging Δ back in:

$$V_n(S,m) = \frac{t_1}{t_1 + t_2} V_n\left(S(1 - t_2), m - 1\right) + \frac{t_2}{t_1 + t_2} V_n\left(S(1 + t_1), m - 1\right)$$

Introduce a random variable $T = \begin{cases} t_1 & \text{w.p.} \frac{t_2}{t_1 + t_2} \\ -t_2 & \text{w.p.} \frac{t_1}{t_1 + t_2} \end{cases}$ Note $\mathbb{E}[T] = 0$

$$V_n(S,m) = \mathbb{E}_T \Big[V_n(S(1+T),m-1) \Big] \quad (!)$$

Derivatives	Black-Scholes	Robust Pricing	Analysis	Future
				000000

Applying this at every round:

$$V_n(S,0) = \mathbb{E}\left[V_n\left(S \cdot \prod_{m=1}^n (1+T_m), n\right)\right]$$
$$= \mathbb{E}\left[g\left(S \cdot \prod_{m=1}^n (1+T_m)\right)\right]$$

Conjectures

1
$$V_n(S, n) \longrightarrow V_{B-S}(S, 1)$$

2 $\Delta(S, m) \longrightarrow \frac{\partial}{\partial S} V_{B-S}(S, \frac{m}{n})$

Derivatives

Black-Scholes

Robust Pricing

Analysis

Future

thank you