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Financial Derivatives

A new financial instrument which is a function of old ones.

Class of derivatives we consider:
Expiration date T (typically 1)
Base stock/asset S
Derivative pays out g(S(T)) at time T
S(t) is the value of S at time t

E.g. cos(gas price on Aug 1)
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Options

Running example: European call option

K

g(S)
0

g(S) =mx(0, S− K), where K is the strike price

Note: will use “option” and “derivative” interchangably



Derivatives Black-Scholes Robust Pricing Analysis Future

How to Price?

What is a derivative g worth?
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Black-Scholes Pricing

Fischer Black and Myron Scholes, 1973

Intuition: price of derivative is cost of implementing it with
existing instruments
The algorithm which implements a derivative is a replication
strategy
The replication strategy has a fixed initial investment, which
should be precisely the price of the derivative
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Replication Strategies

Idea: As stock S fluctuates, use an algorithm A to “hedge” the
option by buying and selling S

c

$A(S)

g(S)

Result: guarantee the payoff of the option, minus a fixed cost c
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Black-Scholes Assumptions

No arbitrage opportunities
0% interest borrowing
Can trade continuously
No transaction fees, no dividend payments, etc

Stock prices follow Geometric Brownian Motion (GBM)
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Geometric Brownian Motion



Derivatives Black-Scholes Robust Pricing Analysis Future

Geometric Brownian Motion

Let W(t) be Brownian Motion with drift μ and volatility σ2

W(0) = 0
W(t)−W(s) and W()−W(t) are indep. for s < t < 

W(t)−W(s) ∼ N(μ(t − s), σ2(t − s))
G(t) is GBM ⇐⇒ og(G(t)) is Brownian Motion
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Delta-hedge Portfolio

Given option/derivative g:
Let V(S, t) be the value of the option at t

Let ∂V
∂S be the replication portfolio

Hold $ ∂V∂S (t) of stock @ time t

Now solve for V using the no-arbitrage condition:
Stochastic PDE from Ito’s Lemma:

∂V

∂S
−
1

2
S2
∂2V

∂S2
= 0

Solution is:

V(S, t) = EG∼GBM[g(SG(T − t))]
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The Black-Scholes Price

Price of option is therefore:

V(S,0) = E[g(SGBM(T))]

Some surprises:
Replication succeeds with probability 1!
GBM above has drift 0 not μ!
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Beyond Black-Scholes

Problems with Black-Scholes
Continuous-time trading

Assumes GBM!

Why stochastic prices?
Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour ’08]
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An Option-Pricing Game

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

An n-round game between Investor and Nature
Discrete-time trades at t =m/n, m ∈ [n]
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An Option-Pricing Game

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

X ∈ X is the price path (Nature)
Tm is the fluctuation at time t =m/n:

X
�

m
n

�

= X
�

m−1
n

�

(1+ Tm)
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m=1
Tm Δm

�

Option payout
Earnings of Investor
Difference = “Regret”
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Value of the Game

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

Value of the game ≥ option price!
Upper bound because of the worst-case assumptions

Interested continuous trading limit as n→∞



Derivatives Black-Scholes Robust Pricing Analysis Future

Value of the Game

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

Value of the game ≥ option price!
Upper bound because of the worst-case assumptions

Interested continuous trading limit as n→∞



Derivatives Black-Scholes Robust Pricing Analysis Future

Constraining Nature

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

What price paths X can Nature choose from?

We require: E[T2
m
|Tm−1] ≤

c

n
c is the “volatility”
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Step I: Duality

inf
A∈A

sp
X∈X E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

By Sion’s Minimax Theorem, we can swap inf and sp!
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Step II: Martingale

sp
X∈X

inf
A∈A E

�

g(X(1)) −
n
∑

m=1
Tm Δm

�

Now {Tm} must be a martingale sequence

Assume not: E[Tm|Tm−1] 6= 0
Investor can choose Δm →±∞
Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
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Step III: Max Variance

sp
X∈X

{Tm} mtg.
E
h

g(X(1))
i

When g is convex, Nature wants to maximize variance

E[T2
m
|Tm−1] =

c

n

Similar reasoning to the Maximum Principle
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Step IV: Central Limit Theorem

Let X∗
n

be Natures OPT price path at n
Martingale sequence with conditional variance c/n

Applying a martingale CLT: Lindeberg–Feller Theorem

Theorem

As n→∞, X∗
n

d−→ GBM

Corollary

As n→∞, E
h

g
�

X∗
n
(1)
�

i

−→ E
h

g(GBM(1))
i

Value of the game Black-Scholes price!
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What Just Happened?

Black-Scholes Option Pricing

Assume stock ∼ GBM
Construct optimal replication strategy

Price(g) = E[g(GBM(1))]

Minimax Option Pricing

Assume stock is adversarial
Analyze dual of the game
Worst-case price path −→ GBM

Price(g) = E[g(GBM(1))]



Derivatives Black-Scholes Robust Pricing Analysis Future

What Just Happened?

Black-Scholes Option Pricing

Assume stock ∼ GBM
Construct optimal replication strategy

Price(g) = E[g(GBM(1))]

Minimax Option Pricing

Assume stock is adversarial
Analyze dual of the game
Worst-case price path −→ GBM

Price(g) = E[g(GBM(1))]



Derivatives Black-Scholes Robust Pricing Analysis Future

Back to DMK

Our constraint on Nature:

E[T2
m
|Tm−1] ≤

c

n

[DeMarzo, Kremer, Mansour ’08] use a cumulative constraint:

n
∑

m=1

E[T2
m
|Tm−1] ≤ c

Weaker constraint
Allows for price jumps

GBM is continuous w.p. 1
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Still Obtain Black-Scholes Price?

From [DeMarzo, Kremer, Mansour ’08]:
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Some Speculation

We believe:
X∗
n
6−→ GBM

X∗
n
(1) −→ GBM(1)

Hence, we would still obtain the Black-Scholes price!

Proof ideas:
spport(Tm) = 2 in dual game
Optimal Δm balances these two points
Then Δm is a discrete derivative of V
This V approaches Black-Scholes V, and
Δm approaches the delta-hedge portfolio!
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New Analysis

Consider the value function for this game:

Vn(S, n) := g(S)

Vn(S,m) := inf
Δ∈R

sp
t∈[−z,z]

Δt + Vn
�

S(1+ t),m− 1
�

And let Δ = Δ(S,m) be the optimal investment for Investor

Lemma

If Δ = Δ(S,m), then Nature’s spt is achieved by at least two
points t1,−t2 with t1, t2 > 0
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By the Lemma, Δ must balance Vn(S,m− 1) at t1 and −t2:

Vn(S,m) = Δ(S,m) t1 + Vn
�

S(1+ t1),m− 1
�

= −Δ(S,m) t2 + Vn
�

S(1− t2),m− 1
�

Solving for Δ:

Δ(S,m) =
Vn
�

S(1− t2),m− 1
�

− Vn
�

S(1+ t1),m− 1
�

t1 + t2

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!
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Martingale??

Plugging Δ back in:

Vn(S,m) =
t1

t1 + t2
Vn
�

S(1−t2),m−1
�

+
t2

t1 + t2
Vn
�

S(1+t1),m−1
�

Introduce a random variable T =

(

t1 w.p. t2
t1+t2

−t2 w.p. t1
t1+t2

Note E[T] = 0

Vn(S,m) = ET
h

Vn(S(1+ T),m− 1)
i

(!)
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Applying this at every round:

Vn(S,0) = E



Vn

 

S ·
n
∏

m=1

(1+ Tm), n

!



= E



g

 

S ·
n
∏

m=1

(1+ Tm)

!



Conjectures

1 Vn(S, n) −→ VB-S(S,1)

2 Δ(S,m) −→
∂

∂S
VB-S(S,

m
n )
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thank you
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