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Financial Derivatives

A new financial instrument which is a function of old ones.

Class of derivatives we consider:
B Expiration date T (typically 1)
B Base stock/asset S

m Derivative pays out g(S(T)) attime T
S(t) is the value of S at time t

E.g. cos(gas price on Aug 1)
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Options

Running example: European call option

g(5)

g(5) = max(0, S — K), where K is the strike price

Note: will use “option” and “derivative” interchangably
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How to Price?

What is a derivative g worth?
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Black-Scholes Pricing

Fischer Black and Myron Scholes, 1973

B Intuition: price of derivative is cost of implementing it with
existing instruments

B The algorithm which implements a derivative is a replication
strategy

B The replication strategy has a fixed initial investment, which
should be precisely the price of the derivative
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Replication Strategies

Idea: As stock S fluctuates, use an algorithm A to “hedge” the
option by buying and selling S

Result: guarantee the payoff of the option, minus a fixed cost ¢
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m No arbitrage opportunities

B 0% interest borrowing

m Can trade continuously

B No transaction fees, no dividend payments, etc

B Stock prices follow Geometric Brownian Motion (GBM)
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Black-Scholes Assumptions

m No arbitrage opportunities

B 0% interest borrowing

m Can trade continuously

B No transaction fees, no dividend payments, etc

B Stock prices follow Geometric Brownian Motion (GBM)
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Geometric Brownian Motion

Geometric Brownian Motion
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Geometric Brownian Motion

Geometric Brownian Motion

Let W(t) be Brownian Motion with drift i and volatility 02
m W0)=0
m W(t)— W(s)and W(u) — W(t) areindep. fors <t <u
m W(t) - W(s) ~N(u(t —-s), o%(t—15s))
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Geometric Brownian Motion

Geometric Brownian Motion

Let W(t) be Brownian Motion with drift i and volatility 02
m W0)=0
m W(t)— W(s)and W(u) — W(t) areindep. fors <t <u
m W(t) - W(s) ~N(u(t —-s), o%(t—15s))

G(t)is GBM <= log(G(t)) is Brownian Motion
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m Stochastic PDE from lto’s Lemma:
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Delta-hedge Portfolio

Given option/derivative g:
B Let V(S t) be the value of the option at t

[ | Let = be the replication portfolio
Ho/d $ (t) of stock @ time t

Now solve for V' using the no-arbitrage condition:

B Stochastic PDE from Ito’s Lemma:
v 1 2azv

3s 2~ as?

W Solution is:

V(S, t) =Ec~am[g(SG(T —t))]
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The Black-Scholes Price

Price of option is therefore:

V(S,0) =E[g(SGBM(T))]
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The Black-Scholes Price

Price of option is therefore:

V(S,0) =E[g(SGBM(T))]

Some surprises:
m Replication succeeds with probability 1!
m GBM above has drift 0 not u!
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Beyond Black-Scholes

Problems with Black-Scholes
m Continuous-time trading
B Assumes GBM!

Why stochastic prices?
Prices respond to decisions of other traders!

Why not adversarial prices? [DeMarzo, Kremer, Mansour '08]
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An Option-Pricing Game

i sSu
Inf SUPEl g(X(1)) = > Tm Bm

B An n-round game between Investor and Nature
B Discrete-time trades at t = m/n, m € [n]
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B A € Ais the replication algorithm (Investor)
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An Option-Pricing Game

0 590 | goxay - Y T B

B A € Ais the replication algorithm (Investor)
B A chooses $Am, to investin S attime t = m/n
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An Option-Pricing Game

n
' Su
jof 520 e | ooy - Y o |
m=

B X € X is the price path (Nature)
B T, is the fluctuation at time t = m/n:

X(2) =X(252) @+ T)
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An Option-Pricing Game

nf > [E{ g(X(1)) = > Tm Bm }

B Option payout
m Earnings of Investor
m Difference = “Regret”
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Value of the game > option price!

Upper bound because of the worst-case assumptions
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Value of the Game

n

i Su

jnf SePE| g(x(1)) - Zl Tm B
m=

Value of the game > option price!

Upper bound because of the worst-case assumptions

Interested continuous trading limit as n — oo
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Constraining Nature

n
i Su
2 520 €| ouay) - Y i |
m=1
What price paths X can Nature choose from?

c
We require: E[T2|Tmo1] < —
q [ ml m-1] p
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Constraining Nature

n
i Su
A2 xew E| 9XQ) = D, [Tm An
m=1
What price paths X can Nature choose from?

C
We require: [E[Trzanm—l] < - C is the “volatility”
n
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By Sion’s Minimax Theorem, we can swap inf and sup!
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Step |: Duality

R o €| o) - X T oo |
m=1
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By Sion’s Minimax Theorem, we can swap inf and sup!
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Step Il: Martingale

n
sSu i
sup inf [E[ o) = 3 T ]
m=

Now {Tm} must be a martingale sequence

m Assume not: E[Tm|Tm-1]1#0
B Investor can choose Ay — 00
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Now {Tm} must be a martingale sequence

m Assume not: E[Tm|Tm-1]1#0
B Investor can choose A, — £0o0
m Nature would have unbounded loss!
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Step Il: Martingale
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Now {Tm} must be a martingale sequence

B Assume not: E[Tm|Tm-1] # 0
B Investor can choose A, — £00
B Nature would have unbounded loss!
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Step Il: Martingale

SuP Inf E| g(X(1) = Y. Tm Anm

Now {Tm} must be a martingale sequence

B Assume not: E[Tm|Tm-1] # 0
B Investor can choose A, — £00
B Nature would have unbounded loss!

But now the algorithm is completely irrelevant!
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Step lll: Max Variance

sup
S8 e[ gt

When g is convex, Nature wants to maximize variance

2 C
ET2|Ti-2] =



Analysis
[e]e]e] lele]

Step lll: Max Variance

Su

When g is convex, Nature wants to maximize variance
5 c
E[T2|Tm-1] = —
n

Similar reasoning to the Maximum Principle
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Step IV: Central Limit Theorem

Let X* be Natures OPT price path at n
Martingale sequence with conditional variance ¢/n

Applying a martingale CLT:  Lindeberg—Feller Theorem

Theorem
Asn — o, x* -1 GBM

Corollary
Asn — oo, E[g(X?(1))] — E[g(GBM(1))]

Value of the game  Black-Scholes price!
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Black-Scholes Option Pricing

B Assume stock ~ GBM
m Construct optimal replication strategy

Price(g) = E[9(GBM(1))]
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What Just Happened?

Black-Scholes Option Pricing

B Assume stock ~ GBM
m Construct optimal replication strategy

Price(g) = E[9(GBM(1))]

Minimax Option Pricing

B Assume stock is adversarial
B Analyze dual of the game
m Worst-case price path — GBM

Price(g) = E[9(GBM(1))]
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Back to DMK

Our constraint on Nature:
5 c
IE[T |Tm—1] <-
m n

[DeMarzo, Kremer, Mansour ’08] use a cumulative constraint:

n

D E[T2Tmal <c

m=1

B Weaker constraint

m Allows for price jumps
GBM is continuous w.p. 1



Still Obtain Black-Scholes Price?

From [DeMarzo, Kremer, Mansour '08]:

— — — Black & Scholes
optimal bound
— - — learning alg.

option value

strike price
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Some Speculation

We believe:
m X -+ GBM
mX*(1) — GBM(1)
Hence, we would still obtain the Black-Scholes price!



Some Speculation

We believe:
m X -+ GBM
mX*(1) — GBM(1)
Hence, we would still obtain the Black-Scholes price!

Proof ideas:
m support(Tm,) = 2 in dual game
m Optimal A, balances these two points
B Then A, is a discrete derivative of V

B This V approaches Black-Scholes V, and
Am approaches the delta-hedge portfolio!
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New Analysis

Consider the value function for this game:
Vn(S, n):=g(S)
Va(S, m):=inf sup At+V, (5(1 +t), m— 1)

AER te[—7,7]

And let A = A(S, m) be the optimal investment for Investor

Lemma

If A = A(S, m), then Nature’s sup; is achieved by at least two
points t1, —t; withty, t; >0



By the Lemma, A must balance V,(S, m — 1) at t; and —t>:

Va(S, m) =A(S, m)ty + Vi, (5(1 +t1), m— 1)
= —A(S,m)t; + V), (5(1 —t)),m— 1)
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By the Lemma, A must balance V,(S, m — 1) at t; and —t>:

Va(S, m) =A(S, m)ty + Vi, (5(1 +t1), m— 1)
= —A(S,m)t; + V), (5(1 —t)),m— 1)

Solving for A:

v,,(5(1 —t5), m— 1) - v,,(S(l +t1), m-— 1)
t1+t2

A(S,m) =

Foreshadowing

A discrete derivative... reminiscent of the delta-hedge portfolio!
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Plugging A back in:

t1
Vn(S, m) ==

th

SV (5(1—t2), m—1)+t

t2

1+

Future
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SV (5(1+t1), m—1)



Martingale??

Plugging A back in:

Vi(S, m) = — - Vo(S(1=t2), m=1)+ & Vo(S(1+t1), m-1)
n\2, t1+t2n 2) t1+t2n 1),

t]_ W.p. L2
P ¥tz Note E[T] =0

Introduce a random variable T = { A
-t wp. o




Martingale??

Plugging A back in:

& -V (S(1+t), m-1)

t1
Vn(S, m) = Vol S(1-t2), m-1 )+
o(Sim) = g Va(SA-t2) m-1)+—

t]_ W.p. L
P ttte Note E[T]=0

Introduce a random variable T = { ; A
—h WP

Va(S, m) =Er [Va(S(L+T), m=1)] ()
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Applying this at every round:

Vn(S,0) =E |V (5- [[@+Tm) nﬂ

m=1

=E g(S- ]_[(1+Tm)ﬂ
L m=1

Conjectures
E V(S n)— Ves(S, 1)
0
B AS, m) — EVB-S(S, =)



thank you
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