Minimax Option Pricing Meets Black-Scholes in the Limit

Objective

- Study an adversarial setting for pricing options – Zero-sum game: Nature vs. Investor
 - Option price is the value of the game
- Consider the limit as trade frequency increases
 - Under reasonable constraints, what does Nature's optimal strategy look like?
 - How does our price compare to the commonly-used Black-Scholes price?

Options

- European call/put exercise @ expiration
- American call/put exercise any time
- "Exotic" basically any derivative
- Our setting
 - Exercised only at time t = 1
 - $-X:[0,1] \rightarrow \mathbb{R}_+$ is the price path
 - Payoff is g(X(1)) for g convex
- European long call: $g(x) = \max(0, x K)$

Replication Strategies

- Basic idea
 - a trading algorithm A with initial debt a
 - attempts to *replicate* the option g
 - payoff dominates the option, minus a
- Key observation: $Price(g) \le a$

- - we get

Pri **\$**40 _□ \$30 ï option \$20-\$10-

Jacob Abernethy

University of Pennsylvania

Rafael Frongillo Andre Wibisono University of California at Berkeley

Black-Scholes

Black-Scholes replication strategy

- Let V(S,t) be the value of the option at t - Let $\frac{\partial V}{\partial S}$ be the replaction portfolio

- To solve for V, we need to solve a stochastic partial differential equation. Via Ito's Lemma,

$$\frac{\partial V}{\partial S} - \frac{1}{2}S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

– Soution is:

 $V(S,t) = \mathbb{E}_{G \sim \mathsf{GBM}}[g(SG(1-t))]$

The Black-Scholes Price

$$ce(g) = \mathbb{E}_{X \sim \mathsf{GBM}}[g(X(1))]$$

DeMarzo, Kremer, Mansour, 2006

- Option Pricing under Adversarial Assumptions – What if prices were chosen by an adversary?

 - bound on the price of an option.

Our Game

Nature vs. Investor

$$\inf_{A \in \mathcal{A}} \sup_{X \in \mathcal{X}} \mathbb{E} \left[g(X(1)) - \sum_{m} T_{m} \Delta_{m} \right]$$

- Discrete-time trades at t = m/n, $m \in [n]$
- $-X \in \mathcal{X}$ is the price path (Nature) T_m is the fluctuation at time t = m/n:

$$X\left(\frac{m}{n}\right) = X$$

- Value of the game = option price!
- Interested continuous trading limit as $n \to \infty$

Constraints on Nature

Bounded per-round variance:

$$\mathbb{E}\left[\left(\frac{X(t)}{X(s)} - 1\right)^2 \middle| X(t)\right]$$

- (GBM satisfies this with equality) - In particular, $\mathbb{E}[T_m^2|T_{m-1}] \leq \exp(c/n) - 1$
- Bounded fluctuations: $|T_m| \leq \zeta_n, \text{ for } \zeta_n \to 0$
 - GBM does not satisfy this!

 - Need ζ_n to increase relative to trading freq:

- Can we still replicate options in the worst case? - DeMarzo et al: **YES:** Construct replication strategies via exponential-weight style algorithm - Worst-case model gives a theoretical upper

 $-A \in \mathcal{A}$ is the replication algorithm (Investor) A chooses Δ_m to invest at time t = m/n $X\left(\frac{m-1}{n}\right)\left(1+T_m\right)$

 $|| \leq \exp(c(t-s)) - 1|$

– For a lower bound, we must truncate GBM

 $\liminf_{n \to \infty} \frac{n\,\zeta_n^2}{\log n} > 16c$

The Proof

Step I: Duality

– Sion's minimax theorem applies: $\inf \longleftrightarrow \sup!$ $\sup_{X \in \mathcal{X}} \inf_{A \in \mathcal{A}} \mathbb{E}[g(X(1)) - \sum_{m} T_{m} \Delta_{m}]$

- (By ζ_n fluctuation constraint, \mathcal{X} is compact)

Step II: Martingality

- Claim: T_1, \ldots, T_m is a martingale sequence
- Suppose not; then Investor can make some $T_m \Delta_m \to \infty$
- Value of the game is now $\sup_{\substack{X \in \mathcal{X} \\ \{T_m\} \operatorname{mtg}}} \mathbb{E}[g(X(1))]$

Step III: Max Variance

– Since g is convex, T_m has maximal conditional variance for all m!

- Hence, $\mathbb{E}[T_m^2 \mid T_{m-1}] = \exp(c/n) - 1$

Step IV: Finale

- Let X_n^* be the optimal price path for n trades
- Theorem: $X_n^* \xrightarrow{d} \mathsf{GBM}$ as $n \to \infty$
- Corollary: $\lim_{n \to \infty} \mathbb{E}[g(X_n^*(1))] = \mathbb{E}[g(\mathsf{GBM}(1))]$
- Option price approaches Black-Scholes price!

Conclusion

- The Black-Scholes pricing scheme is valid even in an adversarial model!
- Moreover, the stochastic assumption made by the Black and Scholes can be derived as the optimal strategy of Nature in our model.

Future Work

- Allowing price jumps
- Only consider points $X(1/n) \dots X(n/n)$
- Per-round variance \rightarrow variance budget

$$\sum_{m=1}^{n} \mathbb{E}[T_m^2 \mid T_{m-1}] \le c$$

- Theorem breaks: $X_n^* \not\rightarrow \mathsf{GBM}$
- But final price converges: $X_n^*(1) \rightarrow \mathsf{GBM}(1)$ – Hence we still have our Corollary:
- $\lim_{n \to \infty} \mathbb{E}[g(X_n^*(1))] = \mathbb{E}[g(\mathsf{GBM}(1))]$
- We still obtain the Black-Scholes price!

