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Abstract

We formalize and study the natural approach of designing convex surrogate loss
functions via embeddings for problems such as classification or ranking. In this
approach, one embeds each of the finitely many predictions (e.g. classes) as a point
in Rd, assigns the original loss values to these points, and convexifies the loss in
between to obtain a surrogate. We prove that this approach is equivalent, in a strong
sense, to working with polyhedral (piecewise linear convex) losses. Moreover,
given any polyhedral loss L, we give a construction of a link function through
which L is a consistent surrogate for the loss it embeds. We go on to illustrate
the power of this embedding framework with succinct proofs of consistency or
inconsistency of various polyhedral surrogates in the literature.

1 Introduction

Convex surrogate losses are a central building block in machine learning for classification and
classification-like problems. A growing body of work seeks to design and analyze convex surrogates
for given loss functions, and more broadly, understand when such surrogates can and cannot be found.
For example, recent work has developed tools to bound the required number of dimensions of the
surrogate’s hypothesis space [13, 24]. Yet in some cases these bounds are far from tight, such as
for abstain loss (classification with an abstain option) [5, 24, 25, 33, 34]. Furthermore, the kinds of
strategies available for constructing surrogates, and their relative power, are not well-understood.

We augment this literature by studying a particularly natural approach for finding convex surrogates,
wherein one “embeds” a discrete loss. Specifically, we say a convex surrogate L embeds a discrete
loss ` if there is an injective embedding from the discrete reports (predictions) to a vector space such
that (i) the original loss values are recovered, and (ii) a report is `-optimal if and only if the embedded
report is L-optimal. If this embedding can be extended to a calibrated link function, which maps
approximately L-optimal reports to `-optimal reports, consistency follows [2]. Common examples
which follow this general construction include hinge loss as a surrogate for 0-1 loss and the abstain
surrogate mentioned above.

Using tools from property elicitation, we show a tight relationship between such embeddings and
the class of polyhedral (piecewise-linear convex) loss functions. In particular, by focusing on Bayes
risks, we show that every discrete loss is embedded by some polyhedral loss, and every polyhedral
loss function embeds some discrete loss. Moreover, we show that any polyhedral loss gives rise to
a calibrated link function to the loss it embeds, thus giving a very general framework to construct
consistent convex surrogates for arbitrary losses.
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Related works. The literature on convex surrogates focuses mainly on smooth surrogate losses [5,
6, 8, 9, 26, 30]. Nevertheless, nonsmooth losses, such as the polyhedral losses we consider, have
been proposed and studied for a variety of classification-like problems [19, 31, 32]. A notable
addition to this literature is Ramaswamy et al. [25], who argue that nonsmooth losses may enable
dimension reduction of the prediction space (range of the surrogate hypothesis) relative to smooth
losses, illustrating this conjecture with a surrogate for abstain loss needing only log n dimensions for
n labels, whereas the best known smooth loss needs n− 1. Their surrogate is a natural example of an
embedding (cf. Section 5.1), and serves as inspiration for our work.

While property elicitation has by now an extensive literature [10, 12, 15, 17, 18, 22, 28, 29], these
works are mostly concerned with point estimation problems. Literature directly connecting property
elicitation to consistency is sparse, with the main reference being Agarwal and Agarwal [2]; note
however that they consider single-valued properties, whereas properties elicited by general convex
losses are necessarily set-valued.

2 Setting

For discrete prediction problems like classification, due to hardness of directly optimizing a given
discrete loss, many machine learning algorithms can be thought of as minimizing a surrogate loss
function with better optimization qualities, e.g., convexity. Of course, to show that this surrogate
loss successfully addresses the original problem, one needs to establish consistency, which depends
crucially on the choice of link function that maps surrogate reports (predictions) to original reports.
After introducing notation, and terminology from property elicitation, we thus give a sufficient
condition for consistency (Def. 4) which depends solely on the conditional distribution over Y .

2.1 Notation and Losses

LetY be a finite outcome (label) space, and throughout let n = |Y|. The set of probability distributions
on Y is denoted ∆Y ⊆ RY , represented as vectors of probabilities. We write py for the probability of
outcome y ∈ Y drawn from p ∈ ∆Y .

We assume that a given discrete prediction problem, such as classification, is given in the form of
a discrete loss ` : R → RY+, which maps a report (prediction) r from a finite setR to the vector of
loss values `(r) = (`(r)y)y∈Y for each possible outcome y ∈ Y . We will assume throughout that the
given discrete loss is non-redundant, meaning every report is uniquely optimal (minimizes expected
loss) for some distribution p ∈ ∆Y . Similarly, surrogate losses will be written L : Rd → RY+,
typically with reports written u ∈ Rd. We write the corresponding expected loss when Y ∼ p as
〈p, `(r)〉 and 〈p, L(u)〉. The Bayes risk of a loss L : Rd → RY+ is the function L : ∆Y → R+ given
by L(p) := infu∈Rd〈p, L(u)〉; naturally for discrete losses we write ` (and the infimum is overR).

For example, 0-1 loss is a discrete loss withR = Y = {−1, 1} given by `0-1(r)y = 1{r 6= y}, with
Bayes risk `0-1(p) = 1−maxy∈Y py . Two important surrogates for `0-1 are hinge loss Lhinge(u)y =
(1− yu)+, where (x)+ = max(x, 0), and logistic loss L(u)y = log(1 + exp(−yu)) for u ∈ R.

Most of the surrogates L we consider will be polyhedral, meaning piecewise linear and convex;
we therefore briefly recall the relevant definitions. In Rd, a polyhedral set or polyhedron is the
intersection of a finite number of closed halfspaces. A polytope is a bounded polyhedral set. A convex
function f : Rd → R is polyhedral if its epigraph is polyhedral, or equivalently, if it can be written as
a pointwise maximum of a finite set of affine functions [27].

Definition 1 (Polyhedral loss). A loss L : Rd → RY+ is polyhedral if L(u)y is a polyhedral (convex)
function of u for each y ∈ Y .

For example, hinge loss is polyhedral, whereas logistic loss is not.

2.2 Property Elicitation

To make headway, we will appeal to concepts and results from the property elicitation literature,
which elevates the property, or map from distributions to optimal reports, as a central object to study
in its own right. In our case, this map will often be multivalued, meaning a single distribution could
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yield multiple optimal reports. (For example, when p = (1/2, 1/2), both y = 1 and y = −1 optimize
0-1 loss.) To this end, we will use double arrow notation to mean a mapping to all nonempty subsets,
so that γ : ∆Y ⇒ R is shorthand for Γ : ∆Y → 2R \ ∅. See the discussion following Definition 3
for conventions regardingR, Γ, γ, L, `, etc.

Definition 2 (Property, level set). A property is a function Γ : ∆Y ⇒ R. The level set of Γ for report
r is the set Γr := {p : r ∈ Γ(p)}.

Intuitively, Γ(p) is the set of reports which should be optimal for a given distribution p, and Γr is the
set of distributions for which the report r should be optimal. For example, the mode is the property
mode(p) = arg maxy∈Y py , and captures the set of optimal reports for 0-1 loss: for each distribution
over the labels, one should report the most likely label. In this case we say 0-1 loss elicits the mode,
as we formalize below.

Definition 3 (Elicits). A loss L : R → RY+, elicits a property Γ : ∆Y ⇒ R if

∀p ∈ ∆Y , Γ(p) = arg min
r∈R

〈p, L(r)〉 . (1)

As Γ is uniquely defined by L, we write prop[L] to refer to the property elicited by a loss L.

For finite properties (those with |R| <∞) and discrete losses, we will use lowercase notation γ and
`, respectively, with reports r ∈ R; for surrogate properties and losses we use Γ and L, with reports
u ∈ Rd. For general properties and losses, we will also use Γ and L, as above.

2.3 Links and Embeddings

To assess whether a surrogate and link function align with the original loss, we turn to the common
condition of calibration. Roughly, a surrogate and link are calibrated if the best possible expected
loss achieved by linking to an incorrect report is strictly suboptimal.

Definition 4. Let original loss ` : R → RY+, proposed surrogate L : Rd → RY+, and link function
ψ : Rd → R be given. We say (L,ψ) is calibrated with respect to ` if for all p ∈ ∆Y ,

inf
u∈Rd:ψ(u)6∈γ(p)

〈p, L(u)〉 > inf
u∈Rd
〈p, L(u)〉 . (2)

It is well-known that calibration implies consistency, in the following sense (cf. [2]). Given feature
space X , fix a distribution D ∈ ∆(X × Y). Let L∗ be the best possible expected L-loss achieved
by any hypothesis H : X → Rd, and `∗ the best expected `-loss for any hypothesis h : X → R,
respectively. Then (L,ψ) is consistent if a sequence of surrogate hypotheses H1, H2, . . . whose
L-loss limits to L∗, then the `-loss of ψ ◦ H1, ψ ◦ H2, . . . limits to `∗. As Definition 4 does not
involve the feature space X , we will drop it for the remainder of the paper.

Several consistent convex surrogates in the literature can be thought of as “embeddings”, wherein one
maps the discrete reports to a vector space, and finds a convex loss which agrees with the original
loss. A key condition is that the original reports should be optimal exactly when the corresponding
embedded points are optimal. We formalize this notion as follows.

Definition 5. A loss L : Rd → RY embeds a loss ` : R → RY if there exists some injective
embedding ϕ : R → Rd such that (i) for all r ∈ R we have L(ϕ(r)) = `(r), and (ii) for all
p ∈ ∆Y , r ∈ R we have

r ∈ prop[`](p) ⇐⇒ ϕ(r) ∈ prop[L](p) . (3)

Note that it is not clear if embeddings give rise to calibrated links; indeed, apart from mapping the
embedded points back to their original reports via ψ(ϕ(r)) = r, how to map the remaining values is
far from clear. We address the question of when embeddings lead to calibrated links in Section 4.

To illustrate the idea of embedding, let us examine hinge loss in detail as a surrogate for 0-1 loss
for binary classification. Recall that we have R = Y = {−1,+1}, with Lhinge(u)y = (1 − uy)+

and `0-1(r)y := 1{r 6= y}, typically with link function ψ(u) = sgn(u). We will see that hinge
loss embeds (2 times) 0-1 loss, via the embedding ϕ(r) = r. For condition (i), it is straightforward
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to check that Lhinge(r)y = 2`0-1(r)y for all r, y ∈ {−1, 1}. For condition (ii), let us compute the
property each loss elicits, i.e., the set of optimal reports for each p:

prop[`0-1](p) =


1 p1 > 1/2

{−1, 1} p1 = 1/2

−1 p1 < 1/2

prop[Lhinge](p) =



[1,∞) p1 = 1

1 p1 ∈ (1/2, 1)

[−1, 1] p1 = 1/2

−1 p1 ∈ (0, 1/2)

(−∞,−1] p1 = 0

.

In particular, we see that −1 ∈ prop[`0-1](p) ⇐⇒ p1 ∈ [0, 1/2] ⇐⇒ −1 ∈ prop[Lhinge](p),
and 1 ∈ prop[`0-1](p) ⇐⇒ p1 ∈ [1/2, 1] ⇐⇒ 1 ∈ prop[Lhinge](p). With both conditions of
Definition 5 satisfied, we conclude that Lhinge embeds 2`0-1. In this particular case, it is known
(Lhinge, ψ) is calibrated for ψ(u) = sgn(u); we address in Section 4 the interesting question of
whether embeddings lead to calibration in general.

3 Embeddings and Polyhedral Losses

In this section, we establish a tight relationship between the technique of embedding and the use of
polyhedral (piecewise-linear convex) surrogate losses. We defer to the following section the question
of when such surrogates are consistent.

To begin, we observe that, somewhat surprisingly, our embedding condition in Definition 5 is
equivalent to merely matching Bayes risks. This useful fact will drive many of our results.

Proposition 1. A loss L embeds discrete loss ` if and only if L = `.

Proof. Throughout we have L : Rd → RY+, ` : R → RY+, and define Γ = prop[L] and γ = prop[`].
Suppose L embeds ` via the embedding ϕ. Letting U := ϕ(R), define γ′ : ∆Y ⇒ U by γ′ : p 7→
Γ(p)∩U . To see that γ′(p) 6= ∅ for all p ∈ ∆Y , note that by the definition of γ as the property elicited
by ` we have some r ∈ γ(p), and by the embedding condition (3), ϕ(r) ∈ Γ(p). By Lemma 3, we
see that L|U (the loss L with reports restricted to U) elicits γ′ and L = L|U . As L(ϕ(·)) = `(·) by
the embedding, we have

`(p) = min
r∈R
〈p, `(r)〉 = min

r∈R
〈p, L(ϕ(r))〉 = min

u∈U
〈p, L(u)〉 = L|U ,

for all p ∈ ∆Y . Combining with the above, we now have L = `.

For the reverse implication, assume that L = `. In what follows, we implicitly work in the affine
hull of ∆Y , so that interiors are well-defined, and ` may be differentiable on the (relative) interior of
∆Y . Since ` is discrete, −` is polyhedral as the pointwise maximum of a finite set of linear functions.
The projection of its epigraph E` onto ∆Y forms a power diagram by Theorem 4, whose cells are
full-dimensional and correspond to the level sets γr of γ = prop[`].

For each r ∈ R, let pr be a distribution in the interior of γr, and let ur ∈ Γ(p). Observe that,
by definition of the Bayes risk and Γ, for all u ∈ Rd the hyperplane v 7→ 〈v,−L(ur)〉 supports
the epigraph EL of −L at the point (p,−〈p, L(u)〉) if and only if u ∈ Γ(p). Thus, the hyperplane
v 7→ 〈v,−L(ur)〉 supports EL = E` at the point (pr,−〈pr, L(ur)〉), and thus does so at the entire
facet {(p,−〈p, L(ur)〉) : p ∈ γr}; by the above, ur ∈ Γ(p) for all such distributions as well. We
conclude that ur ∈ Γ(p) ⇐⇒ p ∈ γr ⇐⇒ r ∈ γ(p), satisfying condition (3) for ϕ : r 7→ ur. To
see that the loss values match, we merely note that the supporting hyperplanes to the facets of EL
and E` are the same, and the loss values are uniquely determined by the supporting hyperplane. (In
particular, if h supports the facet corresponding to γr, we have `(r)y = L(ur)y = h(δy), where δy is
the point distribution on outcome y.)

From this more succinct embedding condition, we can in turn simplify the condition that a loss
embeds some discrete loss: it does if and only if its Bayes risk is polyhedral. (We say a concave
function is polyhedral if its negation is a polyhedral convex function.) Note that Bayes risk, a function
from distributions over Y to the reals, may be polyhedral even if the loss itself is not.

Proposition 2. A loss L embeds a discrete loss if and only if L is polyhedral.
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Proof. If L embeds `, Proposition 1 gives us L = `, and its proof already argued that ` is polyhedral.
For the converse, let L be polyhedral; we again examine the proof of Proposition 1. The projection
of L onto ∆Y forms a power diagram by Theorem 4 with finitely many cells C1, . . . , Ck, which we
can index by R := {1, . . . , k}. Defining the property γ : ∆Y ⇒ R by γr = Cr for r ∈ R, we see
that the same construction gives us points ur ∈ Rd such that ur ∈ Γ(p) ⇐⇒ r ∈ γ(p). Defining
` : R → RY+ by `(r) = L(ur), the same proof shows that L embeds `.

Combining Proposition 2 with the observation that polyhedral losses have polyhedral Bayes risks
(Lemma 5), we obtain the first direction of our equivalence between polyhedral losses and embedding.
Theorem 1. Every polyhedral loss L embeds a discrete loss.

We now turn to the reverse direction: which discrete losses are embedded by some polyhedral loss?
Perhaps surprisingly, we show that every discrete loss is embeddable, using a construction via convex
conjugate duality which has appeared several times in the literature (e.g. [1, 9, 11]). Note however
that the number of dimensions d required could be as large as |Y|.
Theorem 2. Every discrete loss ` is embedded by a polyhedral loss.

Proof. Let n = |Y|, and let C : Rn → R be given by (−`)∗, the convex conjugate of −`. From
standard results in convex analysis, C is polyhedral as −` is, and C is finite on all of RY as the
domain of −` is bounded [27, Corollary 13.3.1]. Note that −` is a closed convex function, as the
infimum of affine functions, and thus (−`)∗∗ = −`. Define L : Rn → RY by L(u) = C(u)1− u,
where 1 ∈ RY is the all-ones vector. We first show that L embeds `, and then establish that the range
of L is in fact RY+, as desired.

We compute Bayes risks and apply Proposition 1 to see that L embeds `. For any p ∈ ∆Y , we have

L(p) = inf
u∈Rn

〈p, C(u)1− u〉

= inf
u∈Rn

C(u)− 〈p, u〉

= − sup
u∈Rn

〈p, u〉 − C(u)

= −C∗(p) = −(−`(p))∗∗ = `(p) .

It remains to show L(u)y ≥ 0 for all u ∈ Rn, y ∈ Y . Letting δy ∈ ∆Y be the point distribution on
outcome y ∈ Y , we have for all u ∈ Rn, L(u)y ≥ infu′∈Rn L(u′)y = L(δy) = `(δy) ≥ 0, where
the final inequality follows from the nonnegativity of `.

4 Consistency via Calibrated Links

We have now seen the tight relationship between polyhedral losses and embeddings; in particular,
every polyhedral loss embeds some discrete loss. The embedding itself tells us how to link the
embedded points back to the discrete reports (map ϕ(r) to r), but it is not clear when this link can be
extended to the remaining reports, and whether such a link can lead to consistency. In this section,
we give a construction to generate calibrated links for any polyhedral loss.

Appendix D contains the full proof; this section provides a sketch along with the main construction
and result. The first step is to give a link ψ such that exactly minimizing expected surrogate loss L,
followed by applying ψ, always exactly minimizes expected original loss `. The existence of such a
link is somewhat subtle, because in general some point u that is far from any embedding point can
minimize expected loss for two very different distributions p, p′, making it unclear whether there
exists a link choice ψ(u) that is simultaneously optimal for both. We show that as we vary p over ∆Y ,
there are only finitely many sets of the form U = arg minu∈Rd〈p, L(u)〉 (Lemma 4). Associating
each U with RU ⊆ R, the set of reports whose embedding points are in U , we enforce that all points
in U link to some report in RU . (As a special case, embedding points must link to their corresponding
reports.) Proving this is well-defined uses a chain of arguments involving the Bayes risk, ultimately
showing that if u lies in multiple U , the corresponding report sets RU all intersect at some r =: ψ(u).

Intuitively, to create separation, we just need to “thicken” this construction by mapping all
approximately-optimal points u to optimal reports r. Let U contain all optimal report sets U
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of the form above. A key step in the following definition will be to narrow down a “link envelope” Ψ
where Ψ(u) denotes the legal or valid choices for ψ(u).
Definition 6. Given a polyhedral L that embeds some `, an ε > 0, and a norm ‖ · ‖, the ε-thickened
link ψ is constructed as follows. First, initialize Ψ : Rd ⇒ R by setting Ψ(u) = R for all u. Then for
each U ∈ U , for all points u such that infu∗∈U ‖u∗ − u‖ < ε, update Ψ(u) = Ψ(u) ∩RU . Finally,
define ψ(u) ∈ Ψ(u), breaking ties arbitrarily. If Ψ(u) became empty, then leave ψ(u) undefined.
Theorem 3. Let L be polyhedral, and ` the discrete loss it embeds from Theorem 1. Then for small
enough ε > 0, the ε-thickened link ψ is well-defined and, furthermore, is a calibrated link from L to `.

Sketch. Well-defined: For the initial construction above, we argued that if some collection such as
U,U ′, U ′′ overlap at a u, then their report sets RU , RU ′ , RU ′′ also overlap, so there is a valid choice
r = ψ(u). Now, we thicken all sets U ∈ U by a small enough ε; it can be shown that if the thickened
sets overlap at u, then U,U ′, U ′′ themselves overlap, so again RU , RU ′ , RU ′′ overlap and there is a
valid chioce r = ψ(u).

Calibrated: By construction of the thickened link, if u maps to an incorrect report, i.e. ψ(u) 6∈ γ(p),
then u must have at least distance ε to the optimal set U . We then show that the minimal gradient
of the expected loss along any direction away from U is lower-bounded, giving a constant excess
expected loss at u.

5 Application to Specific Surrogates

Our results give a framework to construct consistent surrogates and link functions for any discrete
loss, but they also provide a way to verify the consistency or inconsistency of given surrogates. Below,
we illustrate the power of this framework with specific examples from the literature, as well as new
examples. In some cases we simplify existing proofs, while in others we give new results, such as a
new calibrated link for abstain loss, and the inconsistency of the recently proposed Lovász hinge.

5.1 Consistency of abstain surrogate and link construction

In classification settings with a large number of labels, several authors consider a variant of classifica-
tion, with the addition of a “reject” or abstain option. For example, Ramaswamy et al. [25] study the
loss `α : [n] ∪ {⊥} → RY+ defined by `α(r)y = 0 if r = y, α if r = ⊥, and 1 otherwise. Here, the
report ⊥ corresponds to “abstaining” if no label is sufficiently likely, specifically, if no y ∈ Y has
py ≥ 1− α. Ramaswamy et al. [25] provide a polyhedral surrogate for `α, which we present here for
α = 1/2. Letting d = dlog2(n)e their surrogate is L1/2 : Rd → RY+ given by

L1/2(u)y =
(
maxj∈[d]B(y)juj + 1

)
+
, (4)

where B : [n]→ {−1, 1}d is a arbitrary injection; let us assume n = 2d so that we have a bijection.
Consistency is proven for the following link function,

ψ(u) =

{⊥ mini∈[d] |ui| ≤ 1/2

B−1(sgn(−u)) otherwise
. (5)

In light of our framework, we can see that L1/2 is an excellent example of an embedding, where
ϕ(y) = B(y) and ϕ(⊥) = 0 ∈ Rd. Moreover, the link function ψ can be recovered from Theorem 3
with norm ‖ · ‖∞ and ε = 1/2; see Figure 1(L). Hence, our framework would have simplified the
process of finding such a link, and the corresponding proof of consistency. To illustrate this point
further, we give an alternate link ψ1 corresponding to ‖ · ‖1 and ε = 1, shown in Figure 1(R):

ψ1(u) =

{⊥ ‖u‖1 ≤ 1

B−1(sgn(−u)) otherwise
. (6)

Theorem 3 immediately gives calibration of (L1/2, ψ1) with respect to `1/2. Aside from its simplicity,
one possible advantage of ψ1 is that it appears to yield the same constant in generalization bounds as
ψ, yet assigns ⊥ to much less of the surrogate space Rd. It would be interesting to compare the two
links in practice.
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Figure 1: Constructing links for the abstain surrogate L1/2 with d = 2. The embedding is shown in bold labeled
by the corresponding reports. (L) The link envelope Ψ resulting from Theorem 3 using ‖ · ‖∞ and ε = 1/2, and
a possible link ψ which matches eq. (5) from [25]. (M) An illustration of the thickened sets from Definition 6
for two sets U ∈ U , using ‖ · ‖1 and ε = 1. (R) The Ψ and ψ from Theorem 3 using ‖ · ‖1 and ε = 1.

5.2 Inconsistency of Lovász hinge

Many structured prediction settings can be thought of as making multiple predictions at once, with
a loss function that jointly measures error based on the relationship between these predictions [14,
16, 23]. In the case of k binary predictions, these settings are typically formalized by taking the
predictions and outcomes to be ±1 vectors, so R = Y = {−1, 1}k. One then defines a joint
loss function, which is often merely a function of the set of mispredictions, meaning `g(r)y =

g({i ∈ [k] : ri 6= yi}) for some function g : 2[k] → R. For example, Hamming loss is simply
given by g(S) = |S|. In an effort to provide a general convex surrogate for these settings when g
is a submodular function, Yu and Blaschko [32] introduce the Lovász hinge, which leverages the
well-known convex Lovász extension of submodular functions. While the authors provide theoretical
justification and experiments, consistency of the Lovász hinge is left open, which we resolve.

Rather than formally define the Lovász hinge, we defer the complete analysis to Appendix E, and
focus here on the k = 2 case. For brevity, we write g∅ := g(∅), g1,2 := g({1, 2}), etc. Assuming g is
normalized and increasing (meaning g1,2 ≥ {g1, g2} ≥ g∅ = 0), the Lovász hinge L : Rk → RY+ is
given by

Lg(u)y = max
{

(1− u1y1)+g1 + (1− u2y2)+(g1,2 − g1),

(1− u2y2)+g2 + (1− u1y1)+(g1,2 − g2)
}
, (7)

where (x)+ = max{x, 0}. We will explore the range of values of g for which Lg is consistent, where
the link function ψ : R2 → {−1, 1}2 is fixed as ψ(u)i = sgn(ui), with ties broken arbitrarily.

Let us consider g∅ = 0, g1 = g2 = g1,2 = 1, for which `g is merely 0-1 loss on Y . For consistency,
then, for any distribution p ∈ ∆Y , we must have that whenever u ∈ arg minu′∈R2 p · Lg(u′), then
ψ(u) must be the most likely outcome, in arg maxy∈Y p(y). Simplifying eq. (13), however, we have

Lg(u)y = max
{

(1− u1y1)+, (1− u2y2)+

}
= max

{
1− u1y1, 1− u2y2, 0

}
, (8)

which is exactly the abstain surrogate (4) for d = 2. We immediately conclude that Lg cannot be
consistent with `g, as the origin will be the unique optimal report for Lg under distributions with
py < 0.5 for all y, and one can simply take a distribution which disagrees with the way ties are broken
in ψ. For example, if we take sgn(0) = 1, then under p((1, 1)) = p((1,−1)) = p((−1, 1)) = 0.2
and p((−1,−1)) = 0.4, we have {0} = arg minu∈R2 p · Lg(u), yet ψ(0) = (1, 1) /∈ {(−1,−1)} =
arg minr∈R p · `g(r).

In fact, this example is typical: using our embedding framework, and characterizing when 0 ∈ R2 is
an embedded point, one can show that Lg is consistent if and only if g1,2 = g1 + g2. Moreover, in the
linear case, which corresponds to g being modular, the Lovász hinge reduces to weighted Hamming
loss, which is trivially consistent from the consistency of hinge loss for 0-1 loss. In Appendix E, we
generalize this observation for all k: Lg is consistent if and only if g is modular. In other words, even
for k > 2, the only consistent Lovász hinge is weighted Hamming loss. These results cast doubt on
the effectiveness of the Lovász hinge in practice.
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Figure 2: Minimizers of 〈p, `top-2〉 and 〈p, `2〉, respectively, varying p over ∆3.

5.3 Inconsistency of top-k losses

In certain classification problems when ground truth may be ambiguous, such as object identification,
it is common to predict a set of possible labels. As one instance, the top-k classification problem
is to predict the set of k most likely labels; formally, we have R := {r ∈ {0, 1}n : ‖r‖0 = k},
1 < k < n, Y = [n], and discrete loss `top-k(r)y = 1− ry. Surrogates for this problem commonly
take reports u ∈ Rn, with the link ψ(u) = {u[1], . . . , u[k]}, where u[i] is the ith largest entry of u.

Lapin et al. [19, 20, 21] provide the following convex surrogate loss for this problem, which Yang
and Koyejo [31] show to be inconsistent:1

Lk(u)y :=
(

1− uy + 1
k

∑k
i=1(u− ey)[i]

)
+
, (9)

where ey is 1 in component y and 0 elsewhere. With our framework, we can say more. Specifically,
while (Lk, ψ) is not consistent for `top-k, since Lk is polyhedral (Lemma 17), we know from Theo-
rem 1 that it embeds some discrete loss `k, and from Theorem 3 there is a link ψ′ such that (Lk, ψ′)
is calibrated (and consistent) for `k. We therefore turn to deriving this discrete loss `k.

For concreteness, consider the case with k = 2 over n = 3 outcomes. We can re-write L2(u)y =(
1− uy + 1

2 (u[1] + u[2] −min(1, uy))
)

+
. By inspection, we can derive the properties elicited by

`top-2 and L2, respectively, which reveals that the set R′ consisting of all permutations of (1, 0, 0),
(1, 1, 0), and (2, 1, 0), are always represented among the minimizers of L2. Thus, L2 embeds the loss
`2(r)y = 0 if ry = 2 or `2(r)y = 1−ry+ 1

2 〈r,1−ey〉 otherwise. Observe that this is like `top-2, with
a punishment for reporting weight on elements of r other than the outcome and a reward for showing
a “higher confidence” in the correct outcome (i.e. ry = 2). Moreover, we can visually inspect the
corresponding properties (Fig. 2) to immediately see why L2 is inconsistent: for distributions where
the two least likely labels are roughly equally (un)likely, the minimizer will put all weight on the
most likely label, and thus fail to distinguish the other two. More generally, L2 cannot be consistent
because the property it embeds does not “refine” (subdivide) the top-k property, so not just ψ, but no
link function, could make L2 consistent.

6 Conclusion and Future Directions

This paper formalizes an intuitive way to design convex surrogate losses for classification-like
problems—by embedding the reports into Rd. We establish a close relationship between embedding
and polyhedral surrogates, showing both that every polyhedral loss embeds a discrete loss (Theorem 1)
and that every discrete loss is embedded by some polyhedral loss (Theorem 2). We then construct a
calibrated link function from any polyhedral loss to the discrete loss it embeds, giving consistency
for all such losses. We conclude with examples of how the embedding framework presented can be
applied to understand existing surrogates in the literature, including those for the abstain loss, top-k
loss, and Lovász hinge.

1Yang and Koyejo also introduce a consistent surrogate, but it is non-convex.
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One open question of particular interest involves the dimension of the input to a surrogate; given
a discrete loss, can we construct the surrogate that embeds it of minimal dimension? If we naïvely
embed the reports into an n-dimensional space, the dimensionality of the problem scales with the
number of possible labels n. As the dimension of the optimization problem is a function of this
embedding dimension d, a promising direction is to leverage tools from elicitation complexity [13, 18]
and convex calibration dimension [24] to understand when we can take d << n.
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A Power diagrams

First, we present several definitions from Aurenhammer [3].
Definition 7. A cell complex in Rd is a set C of faces (of dimension 0, . . . , d) which (i) union to Rd,
(ii) have pairwise disjoint relative interiors, and (iii) any nonempty intersection of faces F, F ′ in C is
a face of F and F ′ and an element of C.
Definition 8. Given sites s1, . . . , sk ∈ Rd and weights w1, . . . , wk ≥ 0, the corresponding power
diagram is the cell complex given by

cell(si) = {x ∈ Rd : ∀j ∈ {1, . . . , k} ‖x− si‖2 − wi ≤ ‖x− sj‖ − wj} . (10)

Definition 9. A cell complex C in Rd is affinely equivalent to a (convex) polyhedron P ⊆ Rd+1 if C
is a (linear) projection of the faces of P .
Theorem 4 (Aurenhammer [3]). A cell complex is affinely equivalent to a convex polyhedron if and
only if it is a power diagram.

In particular, one can consider the epigraph of a polyhedral convex function on Rd and the projection
down to Rd; in this case we call the resulting power diagram induced by the convex function. We
extend Aurenhammer’s result to a weighted sum of convex functions, showing that the induced power
diagram is the same for any choice of strictly positive weights.
Lemma 1. Let f1, . . . , fm : Rd → R be polyhedral convex functions. The power diagram induced
by
∑m
i=1 pifi is the same for all p ∈ ∆̊Y .

Proof. For any convex function g with epigraph P , the proof of Aurenhammer [3, Theorem 4] shows
that the power diagram induced by g is determined by the facets of P . Let F be a facet of P , and F ′

its projection down to Rd. It follows that g|F ′ is affine, and thus g is differentiable on F̊ ′ with constant
derivative d ∈ Rd. Conversely, for any subgradient d′ of g, the set of points {x ∈ Rd : d′ ∈ ∂g(x)}
is the projection of a face of P ; we conclude that F = {(x, g(x)) ∈ Rd+1 : d ∈ ∂g(x)} and
F ′ = {x ∈ Rd : d ∈ ∂g(x)}.
Now let f :=

∑k
i=1 fi with epigraph P , and f ′ :=

∑k
i=1 pifi with epigraph P ′. By Rockafellar [27],

f, f ′ are polyhedral. We now show that f is differentiable whenever f ′ is differentiable:

∂f(x) = {d} ⇐⇒
k∑
i=1

∂fi(x) = {d}

⇐⇒ ∀i ∈ {1, . . . , k}, ∂fi(x) = {di}
⇐⇒ ∀i ∈ {1, . . . , k}, ∂pifi(x) = {pidi}

⇐⇒
k∑
i=1

∂pifi(x) =

{
k∑
i=1

pidi

}

⇐⇒ ∂f ′(x) =

{
k∑
i=1

pidi

}
.

From the above observations, every facet of P is determined by the derivative of f at any point in the
interior of its projection, and vice versa. Letting x be such a point in the interior, we now see that the
facet of P ′ containing (x, f ′(x)) has the same projection, namely {x′ ∈ Rd : ∇f(x) ∈ ∂f(x′)} =
{x′ ∈ Rd : ∇f ′(x) ∈ ∂f ′(x′)}. Thus, the power diagrams induced by f and f ′ are the same. The
conclusion follows from the observation that the above held for any strictly positive weights p, and f
was fixed.

B Embedding properties

It is often convenient to work directly with properties and set aside the losses which elicit them.
To this end, we say a property to embeds another if eq. (3) holds. We begin with the notion of
redundancy.
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Definition 10 (Finite property, non-redundant). A property Γ : ∆Y ⇒ R is redundant if for some
r, r′ ∈ R we have Γr ⊆ Γr′ , and non-redundant otherwise. Γ is finite if it is non-redundant andR is
a finite set. We typically write finite properties in lower case, as γ.

When working with convex losses which are not strictly convex, one quickly encounters redundant
properties: if 〈p, L(·)〉 is minimized by a point where p · L is flat, then there will be an uncountable
set of reports which also minimize the loss. As results in property elicitation typically assume
non-redundant properties (e.g. [11, 13]), it is useful to consider a transformation which removes
redundant level sets. We capture this transformation as the trim operator presented below.

Definition 11. Given an elicitable property Γ : ∆Y ⇒ R, we define trim(Γ) = {Γu : u ∈
R s.t. ¬∃u′ ∈ R, u′ 6= u, Γu ( Γu′} as the set of maximal level sets of Γ.

Take note that the unlabeled property trim(Γ) is non-redundant, meaning that for any θ ∈ trim(Γ),
there is no level set θ′ ∈ trim(Γ) such that θ ⊂ θ′.
Before we state the Proposition needed to prove many of the statements in Section 3, we will need
to general lemmas about properties and their losses. The first follows from standard results relating
finite properties to power diagrams (see Theorem 4 in the appendix), and its proof is omitted. The
second is closely related to the trim operator: it states that if some subset of the reports are always
represented among the minimizers of a loss, then one may remove all other reports and elicit the
same property (with those other reports removed).

Lemma 2. Let γ be a finite (non-redundant) property elicited by a loss L. Then the negative Bayes
risk G of L is polyhedral, and the level sets of γ are the projections of the facets of the epigraph of G
onto ∆Y , and thus form a power diagram. In particular, the level sets γ are full-dimensional in ∆Y
(i.e., of dimension n− 1).

Lemma 3. Let L elicit Γ : ∆Y ⇒ R1, and let R2 ⊆ R1 such that Γ(p) ∩ R2 6= ∅ for all p ∈ ∆Y .
Then L|R2 (L restricted toR2) elicits γ : ∆Y ⇒ R2 defined by γ(p) = Γ(p) ∩R2. Moreover, the
Bayes risks of L and L|R2 are the same.

Proof. Let p ∈ ∆Y be fixed throughout. First let r ∈ γ(p) = Γ(p) ∩ R2. Then r ∈ Γ(p) =
arg minu∈R1

〈p, L(u)〉, so as r ∈ R2 we have in particular r ∈ arg minu∈R2
〈p, L(u)〉. For the

other direction, suppose r ∈ arg minu∈R2
〈p, L(u)〉. By our assumption, we must have some

r∗ ∈ Γ(p) ∩R2. On the one hand, r∗ ∈ Γ(p) = arg minu∈R1
〈p, L(u)〉. On the other, as r∗ ∈ R2,

we certainly have r∗ ∈ arg minu∈R2
〈p, L(u)〉. But now we must have 〈p, L(r)〉 = 〈p, L(r∗)〉, and

thus r ∈ arg minu∈R1
〈p, L(u)〉 = Γ(p) as well. We now see r ∈ Γ(p) ∩ R2. Finally, the equality

of the Bayes risks minu∈R1
〈p, L(u)〉 = minu∈R2

〈p, L(u)〉 follows immediately by the above, as
∅ 6= Γ(p) ∩R2 ⊆ Γ(p) for all p ∈ ∆Y .

We now state a useful result for proving the existence of an embedding loss, which shows remarkable
structure of embeddable properties, and the properties that embed them. First, we conclude that any
embeddable property must be elicitable. We also conclude that if Γ embeds γ, the level sets of Γ
must all be redundant relative to γ. In other words, Γ is exactly the property γ, just with other reports
filling in the gaps between the embedded reports of γ. (When working with convex losses, these
extra reports are typically the convex hull of the embedded reports.) In this sense, we can regard
embedding as a minor departure from direct elicitation: if a loss L elicits Γ which embeds γ, we can
think of L as essentially eliciting γ itself. Finally, we have an important converse: if Γ has finitely
many full-dimensional level sets, or if trim(Γ) is finite, then Γ must embed some finite elicitable
property with those same level sets.

Proposition 3. Let Γ : ∆Y ⇒ Rd be an elicitable property. The following are equivalent:

1. Γ embeds a finite property γ : ∆Y ⇒ R.

2. trim(Γ) is a finite set, and ∪ trim(Γ) = ∆Y .

3. There is a finite set of full-dimensional level sets Θ of Γ, and ∪Θ = ∆Y .

Moreover, when any of the above hold, {γr : r ∈ R} = trim(Γ) = Θ, and γ is elicitable.

Proof. Let L elicit Γ.
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1 ⇒ 2: By the embedding condition, taking R1 = Rd and R2 = ϕ(R) satisfies the conditions
of Lemma 3: for all p ∈ ∆Y , as γ(p) 6= ∅ by definition, we have some r ∈ γ(p) and thus some
ϕ(r) ∈ Γ(p). Let G(p) := −minu∈Rd〈p, L(u)〉 be the negative Bayes risk of L, which is convex,
and GR that of L|ϕ(R). By the Lemma, we also have G = GR. As γ is finite, G is polyhedral.
Moreover, the projection of the epigraph of G onto ∆Y forms a power diagram, with the facets
projecting onto the level sets of γ, the cells of the power diagram. (See Theorem 4.) As L elicits
Γ, for all u ∈ Rd, the hyperplane p 7→ 〈p, L(u)〉 is a supporting hyperplane of the epigraph of G at
(p,G(p)) if and only if u ∈ Γ(p). This supporting hyperplane exposes some face F of the epigraph
of G, which must be contained in some facet F ′. Thus, the projection of F , which is Γu, must be
contained in the projection of F ′, which is a level set of γ. We conclude that Γu ⊆ γr for some
r ∈ R. Hence, trim(Γ) = {γr : r ∈ R}, which is finite, and unions to ∆Y .

2⇒ 3: letR = {u1, . . . , uk} ⊆ Rd be a set of distinct reports such that trim(Γ) = {Γu1 , . . . ,Γuk
}.

Now as ∪ trim(Γ) = ∆Y , for any p ∈ ∆Y , we have p ∈ Γui for some ui ∈ R, and thus Γ(p)∩R 6= ∅.
We now satisfy the conditions of Lemma 3 with R1 = Rd and R2 = R. The property γ : p 7→
Γ(p) ∩R is non-redundant by the definition of trim, finite, and elicitable. Now from Lemma 2, the
level sets Θ = {γr : r ∈ R} are full-dimensional, and union to ∆Y . Statement 3 then follows from
the fact that γr = Γr for all r ∈ R.

3⇒ 1: let Θ = {θ1, . . . , θk}. For all i ∈ {1, . . . , k} let ui ∈ Rd such that Γui = θi. Now define
γ : ∆Y ⇒ {1, . . . , k} by γ(p) = {i : p ∈ θi}, which is non-degenerate as ∪Θ = ∆Y . By
construction, we have γi = θi = Γui

for all i, so letting ϕ(i) = ui we satisfy the definition of
embedding, namely statement 1.

C Polyhedral losses

Lemma 4. Let L : Rd → RY+ be a polyhedral loss, and let Γ = prop[L]. Then the range of Γ,
U = Γ(∆Y) = {Γ(p) ⊆ Rd|p ∈ ∆Y}, is a finite set of closed polyhedra.

Proof. For all p, let P (p) be the epigraph of the convex function u 7→ 〈p, L(u)〉. From Lemma 1,
we have that the power diagram DY induced by the projection of P (p) onto Rd is the same for any
p ∈ ∆̊Y . Let FY be the set of faces of DY , which by the above are the set of faces of P (p) projected
onto Rd for any p ∈ ∆̊Y .

We claim for all p ∈ ∆̊Y , that Γ(p) ∈ FY . To see this, let u ∈ Γ(p), and u′ = (u, 〈p, L(u)〉) ∈ P (p).
The optimality of u is equivalent to u′ being contained in the face F of P (p) exposed by the normal
(0, . . . , 0,−1) ∈ Rd+1. Thus, Γ(p) = arg minu∈Rd〈p, L(u)〉 is a projection of F onto Rd, which is
an element of FY .

Now considerY ′ ⊂ Y , Y ′ 6= ∅. Applying the above argument, we have a similar guarantee: a finite set
FY′ such that Γ(p) ∈ FY′ for all p with support exactly Y ′. Taking F =

⋃{FY′ |Y ′ ⊆ Y,Y ′ 6= ∅},
we have for all p ∈ ∆Y that Γ(p) ∈ F , giving U ⊆ F . As F is finite, so is U , and the elements of U
are closed polyhedra as faces of DY′ for some Y ′ ⊆ Y .

Lemma 5. If L is polyhedral, L is polyhedral.

Proof. Let L : Rd → RY+ be a polyhedral loss, and Γ = prop[L]. By Lemma 4, U = Γ(∆Y) is
finite. For each U ∈ U , select uU ∈ U , and let U ′ = {uU : U ∈ U}. Then for all p ∈ ∆Y we have
Γ(p) ∩ U ′ 6= ∅, so Lemma 3 gives us L = L|U ′ , which is polyhedral as U ′ is finite.

D Thickened link and calibration

We define some notation and assumptions to be used throughout this section. Let some norm ‖ · ‖ on
finite-dimensional Euclidean space be given. Given a set T and a point u, let d(T, u) = inft∈T ‖t−u‖.
Given two sets T, T ′, let d(T, T ′) = inft∈T,t′∈T ′ ‖t− t′‖. Finally, let the “thickening” B(T, ε) be
defined as

B(T, ε) = {u ∈ R′ : d(T, u) < ε}.
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Assumption 1. ` : R×Y → RY+ is a loss on a finite report setR, eliciting the property γ : ∆Y ⇒ R.
It is embedded by L : Rd × Y → RY+, which elicits the property Γ : ∆Y ⇒ Rd. The embedding
points are {ϕ(r) : r ∈ R}.

Given Assumption 1, let S ⊆ 2R be defined as S = {γ(p) : p ∈ ∆Y}. In other words, for each p,
we take the set of optimal reports R = γ(p) ⊆ R, and we add R to S. Let U ⊆ 2R

d

be defined as
U = {Γ(p) : p ∈ ∆Y}. For each U ∈ U , let RU = {r : ϕ(r) ∈ U}.
The next lemma shows that if a subset of U intersect, then their corresponding report sets intersect as
well.

Lemma 6. Let U ′ ⊆ U . If ∩U∈U ′U 6= ∅ then ∩U∈U ′RU 6= ∅.

Proof. Let u ∈ ∩U∈U ′U . Then we claim there is some r such that Γu ⊆ γr. This follows from
Proposition 3, which shows that trim(Γ) = {γr : r ∈ R}. Each Γu is either in trim(Γ) or is
contained in some set in trim(Γ), by definition, proving the claim.

For each U ∈ U ′, for any p such that U = Γ(p), we have in particular that u is optimal for p, so
p ∈ Γu, so p ∈ γr, so r is optimal for p. This implies that φ(r), the embedding point, is optimal for
p, so φ(r) ∈ U . This holds for all U ∈ U ′, so r ∈ ∩U∈U ′RU , so it is nonempty.

Lemma 7. Let D be a closed, convex polyhedron in Rd. For any ε > 0, there exists an open, convex
set D′, the intersection of a finite number of open halfspaces, such that

D ⊆ D′ ⊆ B(D, ε).

Proof. Let S be the standard open ε-ball B({~0}, ε). Note that B(D, ε) = D + S where + is the
Minkowski sum. Now let S′ = {u : ‖u‖1 ≤ δ} be the closed δ ball in L1 norm. By equivalence of
norms in Euclidean space [7, Appendix A.1.4], we can take δ small enough yet positive such that
S′ ⊆ S. By standard results, the Minkowski sum of two closed, convex polyhedra, D′′ = D + S′ is
a closed polyhedron, i.e. the intersection of a finite number of closed halfspaces. (A proof: we can
form the higher-dimensional polyhedron {(x, y, z) : x ∈ D, y ∈ S′, z = x+ y}, then project onto
the z coordinates.)

Now, if T ′ ⊆ T , then the Minkowksi sum satisfies D + T ′ ⊆ D + T . In particular, because
∅ ⊆ S′ ⊆ S, we have

D ⊆ D′′ ⊆ B(D, ε).

Now let D′ be the interior of D′′, i.e. if D′′ = {x : Ax ≤ b}, then we let D′ = {x : Ax < b}.
We retain D′ ⊆ B(D, ε). Further, we retain D ⊆ D′, because D is contained in the interior of
D′′ = D+S′. (Proof: if x ∈ D, then for some γ, x+B({~0}, γ) = B(x, γ) is contained in D+S′.)
This proves the lemma.

Lemma 8. Let {Uj : j ∈ J } be a finite collection of closed, convex sets with ∩j∈JUj 6= ∅. Then
there exists ε > 0 such that ∩jB(Uj , ε) ⊆ B(∩jUj , δ).

Proof. We induct on |J |. If |J | = 1, set ε = δ. If |J | > 1, let j ∈ J be arbitrary, letU ′ = ∩j′ 6=jUj′ ,
and let C(ε) = ∩j′ 6=jB(Uj′ , ε). Let D = Uj ∩ U ′. We must show that B(Uj , ε) ∩ C(ε) ⊆ B(D, δ).
By Lemma 7, we can enclose D strictly within a polyhedron D′, the intersection of a finite number
of open halfspaces, which is itself strictly enclosed in B(D, δ). (For example, if D is a point, then
enclose it in a hypercube, which is enclosed in the ball B(D, δ).) We will prove that, for small
enough ε, B(Uj , ε) ∩ C(ε) is contained in D′. This implies that it is contained in B(D, δ).

For each halfspace defining D′, consider its complement F , a closed halfspace. We prove that
F ∩ B(Uj , ε) ∩ C(ε) = ∅. Consider the intersections of F with U and U ′, call them G and G′.
These are closed, convex sets that do not intersect (because D in contained in the complement
of F ). So G and G′ are separated by a nonzero distance, so B(G, γ) ∩ B(G′, γ) = ∅ for small
enough γ. And B(G, γ) = F ∩ B(Uj , γ) while B(G′, γ) = F ∩ B(U ′, γ). This proves that
F ∩B(Uj , γ)∩B(U ′, γ) = ∅. By inductive assumption, C(ε) ⊆ B(U ′, γ) for small enough ε = εF .
So F ∩ B(Uj , γ) ∩ C(ε) = ∅. We now let ε be the minimum over these finitely many εF (one per
halfspace).
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Figure 3: Illustration of a special case of the proof of Lemma 8 where there are two sets U1, U2 and their
intersection D is a point. We build the polyhedron D′ inside B(D, δ). By considering each halfspace that
defines D′, we then show that for small enough ε, B(U1, ε) and B(U2, ε) do not intersect outside D′. So the
intersection is contained in D′, so it is contained in B(D, δ).
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Lemma 9. Let {Uj : j ∈ J } be a finite collection of nonempty closed, convex sets with ∩j∈JUj = ∅.
Then for all δ > 0, there exists ε > 0 such that ∩j∈JB(Uj , ε) = ∅.

Proof. By induction on the size of the family. Note that the family must have size at least two. Let
Uj be any set in the family and let U ′ = ∩j′ 6=jUj′ . There are two possibilities.

The first possibility, which includes the base case where the size of the family is two, is the case U ′ is
nonempty. Because Uj and U ′ are non-intersecting closed convex sets, they are separated by some
distance ε. By Lemma 8, for any ε > 0, there exists δ > 0 such that ∩j′ 6=jB(Uj′ , δ) ⊆ B(U ′, ε/3).
Then we have B(Uj , ε/3) ∩B(U ′, ε/3) = ∅.
The second possibility is that U ′ is empty. This implies we are not in the base case, as the family must
have three or more sets. By inductive assumption, for small enough δ we have ∩j′ 6=jB(Uj′ , δ) = ∅,
which proves this case.

Corollary 1. There exists a small enough ε > 0 such that, for any subset {Uj : j ∈ J } of U , if
∩jUj = ∅, then ∩jB(Uj , ε) = ∅.

Proof. For each subset, Lemma 9 gives an ε. We take the minimum over these finitely many
choices.

Theorem 5. For all small enough ε, the epsilon-thickened link ψ (Definition 6) is a well-defined link
function fromR′ toR, i.e. ψ(u) 6= ⊥ for all u.

Proof. Fix a small enough ε as promised by Corollary 1. Consider any u ∈ R′. If u is not in B(U, ε)
for any U ∈ U , then we have Ψ(u) = R, so it is nonempty. Otherwise, let {Uj : j ∈ J } be the
family whose thickenings intersect at u. By Corollary 1, because of our choice of ε, the family
themselves has nonempty intersection. By Lemma 6, their corresponding report sets {Rj : j ∈ J }
also intersect at some r, so Ψ(u) is nonempty.

In the rest of the section, for shorthand, we write L(u; p) := 〈p, L(u)〉 and similarly `(r; p).

Lemma 10. Let U be a convex, closed set and u 6∈ U . Then infu∗∈U ‖u− u∗‖ is achieved by some
unique u∗ ∈ U . Furthermore, u∗ is the unique member of U such that u = u∗ + αv for some α > 0
and unit vector v that exposes u∗.

Proof. Unique achievement of the infimum is well-known. (Achievement follows e.g. because
the set U ∩ {u′ : ‖u − u′‖ ≤ d(U, u) + 1} is closed and compact, so the continuous function
u′ 7→ ‖u− u′‖ achieves its infimum. Uniqueness follows because for two different points u′, u′′ at
the same distance from u, the point 0.5u′ + 0.5u′′ is strictly closer and also lies in the convex set
U .) Now suppose u = u′ + α′v′ where v′ is a unit vector exposing u′. Then U is contained in the
halfspace {u′′ : 〈u′′, v′′〉 ≤ 〈u′, v′〉}. But every point in this halfspace is distance at least α′ from u,
as ‖u− u′′‖ ≥ 〈v, u− u′′〉 ≥ 〈v, u− u′〉 = α′. So u′ uniquely achieves this minimum distance.
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Lemma 11. If L is a polyhedral loss, then for each p, there exists a constant c such that, for all u,

L(u; p)− inf
u∗∈R′

L(u∗; p) ≥ c · d(Γ(p), u).

Proof. Fix p and let U = Γ(p). If u ∈ U , then both sides are zero. So it remains to find a c such that
the inequality holds for all u 6∈ U .

L(·; p) is a convex polyhedral function, so it is the pointwise maximum over finitely many affine
functions. Recall that L(p) = minu L(u; p), the Bayes risk. Construct the convex polyhedral
function L̂(·; p) by dropping from the maximum those affine functions that are never equal to L for
any u∗ ∈ U . We have L̂(u∗; p) = L(p) for all u∗ ∈ U and L̂(u; p) ≤ L(u; p) for all u 6∈ U . Now L̂

is also a maximum over finitely many affine functions F . Each such function f ∈ F is equal to L̂
above a closed, convex cell Uf ⊆ Rd in the power diagram formed by projecting L̂(·; p). If f has
nonzero gradient, then Uf ∩ U is a face of U . We will prove that there exists cf > 0 such that, for all
u ∈ Uf ,

L̂(u; p) ≥ L(p) + cf · d(U, u).

Taking c to be the minimum of cf over the finitely many f ∈ F with nonzero gradient (which covers
all points u 6∈ U ) will complete the proof.

Consider the set of unit vectors V = {v ∈ Rd : ‖v‖ = 1} and the boundary of U , denoted ∂U . For
any u∗ ∈ ∂U , v ∈ V such that v exposes u∗, let Gu∗,v = {u∗ + βv : β ≥ 0} be the ray leaving
U from u∗ in direction v. For each f ∈ F , we define the set Rf ⊆ ∂U × V to be the points
(u∗, v) such that there exists ε > 0 with Gu∗,v ∩ Uf = Gu∗,v ∩ B(u∗, ε); that is, such that the
ray Gu∗,v starts its journey in Uf . Futhermore, define U∗f,v = {u∗ ∈ ∂U : (u∗, v) ∈ Rf} and
Vf = {v ∈ V : ∃u∗ ∈ Uf ∩ U, (u∗, v) ∈ Rf}. (That is, U∗f,v is the set of points from which the ray
in direction v begins in Uf , and Vf is the set of all normal directions in which some ray begins in
Uf .) Finally, define Gf = ∪(u∗,v)∈Rf

Gu∗,v as the union of all such rays beginning in Uf . Note that
∪f∈FGf ⊇ Rd \ U ; this follows as every point not in U is on a normal ray out of U , which must
begin in some cell Uf .

We will prove the following steps:

1. For all f ∈ F , v ∈ Vf , there exists a constant cf,v > 0 such that L(u; p) ≥ L(p) + cf,v ·
d(U, u) for all u ∈ Gu∗,v and all u∗ ∈ U∗f,v.

2. For all f ∈ F , the set Vf is compact, and the map v 7→ cf,v is continuous on Vf .

3. Hence, there is an infimum cf > 0 such that f(u) ≥ L(p) + cf · d(U, u) for all u ∈ Gf .

4. Let c = min{cf : f ∈ F ,∇f 6= 0}; then L(u; p) ≥ L(p) + c · d(U, u) for all u 6∈ U .

(1) Let∇f denote the gradient of the affine function f . Note that because u∗ is on the boundary of
U , we have f(u∗) = L̂(u∗; p) = L(p). So we can write, using Lemma 10,

f(u) = f(u∗) + (∇f) · (u− u∗)
f(u) = f(u∗) + (∇f) · (d(u∗, u)v)

= L(p) + cf,v · d(U, u)

where cf,v = (∇f) · v. We must have cf,v > 0 because the set U minimizes L(·; p), so f(u) >

f(u∗) = L(p). The result now follows as L(u; p) ≥ L̂(u; p) ≥ f(u).

(2) The intersection Uf ∩ U is a face of U , and thus decomposes as the union of relative interiors of
subfaces, Uf ∩ U = ∪iri(Fi). For each i, let Vi = {v ∈ V : ∃u∗ ∈ ri(Fi), (u∗, v) ∈ Rf}. For any
v ∈ Vi, we may consider the power diagram restricted toA, the affine hull of {u+αv : u ∈ U,α ∈ R}.
As there is some u∗ ∈ U such that (u∗, v) ∈ Rf , in particular, Uf ∩A intersects A ∩ ri(Fi) and thus
must contain A ∩ ri(Fi). We conclude that (u′, v) ∈ Rf for all other u′ ∈ ri(Fi). Thus, we have
{(u∗, v) ∈ Rf : u∗ ∈ Fi} = Fi × Vi. For closure, pick any u∗ ∈ ri(Fi), and consider a sequence
{vj}j with (u∗, vj) ∈ Rf , and corresponding witnesses {εj}j . Then we have u∗ + εjvj ∈ Uf for
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all j, and as u∗ ∈ Uf and Uf is closed and convex, the limiting point must be contained in Uf as
well. We have now shown Vf to be the union of finitely many closed convex sets, and thus closed.
Boundedness follows as V is bounded. Finally, cf,v is linear in v, and thus continuous.

Steps (3) and (4) are immediate and complete the proof.

Theorem 6. For small enough ε, the ε-thickened link ψ (Definition 6) satisfies that, for all p, there
exists δ > 0 such that, for all u ∈ R′,

L(u; p)− inf
u∗∈R′

L(u∗; p) ≥ δ
[
`(ψ(u); p)− min

r∗∈R
`(r∗; p)

]
.

Proof. We take the ε thickened link, which is well-defined by Theorem 5. Fix p and let U = Γ(p).
The left-hand side is nonnegative, so it suffices to prove the result for all u such that the right side is
strictly positive, i.e. for all u such that ψ(u) 6∈ γ(p). By definition of the ε-thickened link, we must
have d(U, u) ≥ ε. By Lemma 11, we have L(u; p) − infu∗ L(u∗; p) ≥ C where C = cε for some
c > 0. This holds for all u. Meanwhile,

`(ψ(u); p)−min
r∗

`(r∗; p) ≤ max
r∈R

`(r; p)− min
r∗∈R

`(r∗; p) =: D,

for some constant D. This also holds for all u. Set δ = C
D to complete the proof.

Proof of Theorem 3. The two claims are Theorems 5 and 6.

E Lovász Hinge

The Lovász hinge, introduced by Yu and Blaschko [32], is a (convex) polyhedral surrogate for discrete
losses described in terms of a submodular function, based on the well-known Lovász extension. We
will study this surrogate using our framework, first identifying the loss it embeds, and then leveraging
this loss to find a proof of inconsistency. As defining the Lovász hinge takes care, we begin with
definitions.

E.1 Notation and Definitions

LetN = {1, . . . , k} be the index set for our binary predictions, with outcomesY = 2N corresponding
to the set of labels which are assigned +1. To map to the usual labels {−1, 1}, for any S ⊆ N , we let
1S ∈ {0, 1}k with (1S)i = 1 ⇐⇒ i ∈ S be the 0-1 indicator for S, and we let χS ∈ {−1, 1}k with
χS = 21S − 1 be the ±1 indicator. For clarity of exposition, we will depart from our usual notation
for loss functions, writing a discrete loss ` : R×Y → R and surrogate L : Rk×Y → R, and writing
expected loss L(u; p). The link will be the sign function ψ = sgn, with ties broken arbitrarily.

A set function f : 2N → R is submodular if for all S, T ⊆ N we have f(S) + f(T ) ≥ f(S ∪ T ) +
f(S ∩ T ). A function is supermodular if the inequality is reversed, and modular if it holds with
equality, for all S, T ⊆ N . The function f is increasing if we have f(S ∪ T ) ≥ f(S), again for all
S, T ⊆ N .

We are interested in convex surrogates for the following discrete loss ` : R × Y → R, where
R = Y = 2N ,

`f (A,S) = f(A4S) , (11)
where4 is the symmetric difference operator, defined by S4T = (S\T )∪(T \S). Note: throughout
we assume4 has operator precedence over \, ∩, and ∪. In words, `f measures the joint error of our
k predictions by computing the set of mispredictions (elements in A but not S and vice versa) and
calling the set function f .

A natural approach to deriving convex surrogates in the case of submodular functions f is the Lovász
extension, which is known to be convex when f if (and only if) submodular. Given any set-valued
function f : 2N → R, its Lovász extension F : Rk → R is given by

F (u) = E[f({i : ui ≥ Θ})] , (12)

where Θ is a uniformly distributed random variable on [0, 1]. There are several equivalent formulations
for the Lovász extension; see Bach [4, Definition 3.1].
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Given set function f with Lovász extension F , Yu and Blaschko [32] define the Lovász hinge as the
loss Lf : Rk × Y → R given by

Lf (u, S) =

{
F
(
(1− u� χS)+

)
if f is increasing(

F (1− u� χS)
)

+
otherwise

, (13)

where v(u� y)i = uiyi is the Hadamard (element-wise) product and ((u)+)i = max(ui, 0). In what
follows, we focus on the increasing case, which is the most natural: when you make an additional
error, your loss cannot decrease.

E.2 What does L embed?

From well-known facts about the Lovász extension (see Lemma 13 below), Lf is certainly polyhedral,
and thus by our framework we know it must embed a discrete loss ˆ̀f , which may or may not be the
same as `f . As with the top-k example, we begin our analysis by calculating ˆ̀f .

Let Γf = prop[Lf ] and U = {−1, 0, 1}k. Note that, for disjoint setsA,B ⊆ N , we have χA+1B ∈
U , which at coordinate i evaluates to 1 for i ∈ A, 0 for i ∈ B, and −1 otherwise. Moreover, every
point in U can be uniquely described in this way. Finally, observe χA + 1B = χA � 1N\B .

We will show that for every distribution p, an element of U is always represented in the minimizers of
Lf , i.e., Γf (p). First, we show that we may restrict to the filled hypercube [−1, 1]k without loss of
generality.

Lemma 12. Let f : 2N → R+ be increasing and normalized. Then for all p ∈ ∆Y , Γ(p)∩[−1, 1]k 6=
∅.

Proof. Let u ∈ Γf (p) such that |ui| > 1 for some i ∈ [k], and furthermore suppose |ui| is the
smallest value among all such coordinates, i.e., |ui| = min{|uj | : |uj | > 1}. We show that
u′ ∈ Γf (p) where u′j = uj for j 6= i and u′i = sgn(ui) so that |u′i| = 1; the result then follows by
iterating this argument until there are no entries with |ui| > 1. In fact, we will show the stronger
statement that for all S ∈ Y , Lf (u′, S) ≤ Lf (u, S). Let w = 1− u� χS and w′ = 1− u′ � χS ,
and note that Lf (u, S) = F (w+) and Lf (u′, S) = F (w′+).

First, consider the case that (χS)iui > 0; that is, if ui > 0 and i ∈ S, or ui < 0 and i /∈ S. Here
1 − (χS)iui = 1 − |ui| < 0, so wi < 0. For u′, we similarly have w′i = 1 − |u′i| = 0. As u and
u′ differ only at index i, the same holds for w and w′; we thus have w+ = w′+, so the loss remains
unchanged.

In the other case, (χS)iui < 0, we have wi = 1 + |ui| > 2 and w′i = 1 + |u′i| = 2, and again the
other entries are identical. In particular, w′i ≤ wi. Moreover, we claim that there is no other value in
between, i.e., there is no index j 6= i such that w′i < wj < wi. This follows from our assumption
on i: if we had such a j, then we must have 2 < 1 − (χS)juj < 1 + |ui|, which can only occur
when sgn(uj) 6= χS , and thus −(χS)juj = |uj |; we conclude 1 < |uj | < |ui|, a contradiction.
Thus, for all j 6= i, we have either wj ≤ w′i ≤ wi or w′i ≤ wi ≤ wj . In light of w′j = wj , this
is equivalent to either (a) wj ≤ wi and w′j ≤ w′i, or (b) wi ≤ wj and w′i ≤ w′j . Thus, there is
a permutation π which orders the elements of both w and w′ simultaneously: for all j, j′ ∈ [k],
j < j′, we have both wπj ≥ wπj′ and w′πj

≥ w′πj′
. By another common representation of the Lovász

extension [4, Equation 3.1], we thus have F (w+)−F (w′+) = ((w+)i−(w′+)i)(f(T∪{i})−f(T )) =
(|ui| − 1)(f(T ∪ {i})− f(T )) > 0, where T = {π1, . . . , πj} such that πj+1 = i, and we have used
the fact that f is increasing and |ui| > 1.

From Lemma 12, we may now simplify the loss. When u ∈ [−1, 1]k, we simply have Lf (u, S) =
F (1− u� χS), as the coordinates of the input to F are nonnegative. We now further restrict to U .

Lemma 13. Let Γ = prop[Lf ]. Then for all p ∈ ∆Y , Γ(p) ∩ U 6= ∅.

Proof. We will construct polytopes PAπ ⊆ [−1, 1]k for every set A ⊆ N and permutation π ∈ NN ,
satisfying three conditions: (i) these polytopes cover the hypercube, meaning ∪A,πPAπ = [−1, 1]k,
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(ii) PAπ is the convex hull of points in U , and (iii) for all S ⊆ N , L(·, S) is linear on PAπ . The result
will then follow, as L(·; p) will be also linear on each PAπ , and thus minimized at a vertex.

To begin, let us recall the polyhedra on which the Lovász extension is linear; for any permutation π,
define Pπ = {u ∈ Rk : uπ1

≥ · · · ≥ uπk
}. It is clear from the definition that F is linear on Pπ; see

also Equation 3.1, and “Linear interpolation on simplices” (pg. 167) in Bach [4]. We will use these
polyhedra to identify the regions where L(·, S) is linear simultaneously for all outcomes S ∈ Y . For
any A ⊆ N and permutation π, let

PAπ = {u ∈ [−1, 1]k : u� χA ∈ Pπ ∩ Rk+} . (14)

That is, PAπ contains all points u such that u � χA is nonnegative (meaning sgn(u) matches χA,
breaking ties at 0 favorably) and such that the coordinates of u�χA are in increasing order according
to π.

Condition (i) follows immediately: for any u ∈ [−1, 1]k, let A = {i : ui ≥ 0}, and π be any
permutation ordering the elements of u � χA. For condition (ii), note that for any u ∈ PAπ , as
u� χA ∈ Pπ we may write

u� χA =

k−1∑
i=1

[(
uπi

(χA)πi
− uπi+1

(χA)πi+1

)
1{π1,...,πi}

]
+ uπk

(χA)πk
1 , (15)

which is a convex combination (again, see Bach [4, pg. 167]). We simply apply the involution �χA
again, to obtain

u =

k−1∑
i=1

(
uπi(χA)πi − uπi+1(χA)πi+1

)
1{π1,...,πi} � χA + uπk

(χA)πk
χA , (16)

and condition (ii) follows as 1B · χA ∈ U for all sets B ⊆ N .

Finally, for condition (iii), fix a subset A ⊆ N and permutation π. For each outcome S ⊆ N , we
will construct an alternate permutation πS such that for all u ∈ PAπ we have 1 − u � χS ∈ PπS .
As F is linear on Pπ′ for all permutations π′, we will conclude that for any fixed subset S the loss
L(u, S) = F (1− u� χS) will be linear in u on PAπ .

To construct πS , we “shatter” the permutation π into two pieces, depending on whether an index is
in A4S or not. In particular, note that if i ∈ A4S, then for all u ∈ PAπ we have ui(χA)i ≥ 0 and
(χA)i = −(χS)i, so (1− u� χS)i = 1− ui(χS)i = 1 + ui(χA)i ≥ 1. Similarly, when i /∈ A4S,
then (χA)i = (χS)i, so (1−u�χS)i = 1−ui(χS)i = 1−ui(χA)i ≤ 1. As π orders the elements
ui(χS)i in decreasing order, we see that the following permutation πS will order the elements of
1−u�χS in decreasing order: sort the elements in A4S according to π, followed by the remaining
elements according to the reverse of π. As the definition of πS is independent of u, we see that
u ∈ PAπ =⇒ 1− u� χS ∈ PπS , as desired.

We can now see that Lf embeds the loss given by Lf restricted to U , as U is a finite set. In fact, we
can write this loss entirely in terms of f itself.

Lemma 14. Let ˆ̀f : R̂ × Y → R+, where R̂ = {(A,B) ∈ 2N × 2N : A ∩B = ∅}, be given by

ˆ̀f ((A,B), S) = Lf (χA + 1B , S) = f(A4S \B) + f(A4S ∪B) . (17)

Then the Lovász hinge Lf embeds ˆ̀f .

Proof. As observed above, the set U is in bijection with R̂, using the transformation u = χA + 1B .
As also observed above, we may write u = χA � 1N\B as well. Combining Lemma 13 with 3, we
see that Lf embeds Lf |U . It thus only remains to verify the form (17). We have Lf (u, S) = F (x)
where x = 1 − u � χS = 1 − 1N\B � χA � χS = 1 + 1N\B � χA4S = 1B + 21A4S\B . As
(A4S \B) ∪B = A4S ∪B, the result follows from [4, Prop 3.1(h)].

From the form (17), we see that ˆ̀f matches 2` when B = ∅, just as hinge loss embeds twice 0-1
loss. When B is nonempty, it acts as an “abstain set”, guaranteeing some loss in the second term, but
removing errors in the first term.
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E.3 Inconsistency

In light of the previous results, we can see that to show inconsistency we may focus on reports (A,B)
with B 6= ∅. Intuitively, if such a report is ever optimal, then Lf has a “blind spot” with respect to
the indices in B, and we can leverage this to “fool” Lf . In particular, we will focus on the uniform
distribution p̄ on Y , and perturb it slightly depending on B to find an optimal point u ∈ U which
maps to a suboptimal report. In fact, we will show that one can always find such a point violating
calibration, unless f is modular.

Given our focus on the uniform distribution, the following definition will be useful: for any set
function f , let f̄ := ES∼p̄[f(S)] = 2−k

∑
S⊆N f(S). The next two lemmas relate f̄ and f(N) to

expected loss and modularity.

Lemma 15. For all (A,B) ∈ R̂, ˆ̀f ((A,B); p̄) ≥ f(N). For all A ⊆ N , ˆ̀f ((A, ∅); p̄) = 2f̄ .

Proof. Letting B := N \B for short

ˆ̀f ((A,B); p̄) = 2−k
∑
S⊆N

f(A4S \B) + f(A4S ∪B)

= 2−|B|
∑
T⊆B

f(T ) + f(T ∪B)

=
1

2
2−|B|

∑
T⊆B

f(T ) + f(B \ T ) + f(T ∪B) + f((B \ T ) ∪B)

≥ 1

2

(
f(B) + f(∅) + f(N) + f(B)

)
≥ 1

2
(f(N) + f(N)) = f(N) ,

where we use submodularity in both inequalities. The second statement follows from the second
equality above after setting B = ∅, as then B = N and thus T ranges over all of 2N .

Lemma 16. Let f be submodular and normalized. Then f̄ ≥ f(N)/2, and f is modular if and only
if f̄ = f(N)/2.

Proof. The inequality follows from Lemma 15 with B = ∅. Next, note that if f modular we trivially
have f̄ = f(N)/2. If f is submodular but not modular, we must have some S ⊆ N and i ∈ S such
that f(S)− f(S \ {i}) < f({i}). By submodularity, we conclude that f(N)− f(N \ {i}) < f({i})
as well; rearranging, f({i}) + f(N \ {i}) > f(N) = f(N) + f(∅). Again examining the proof
of Lemma 15, we see that the first inequality must be strict, as we have one such T ⊆ N , namely
T = {i}, for which the inequality in submodularity is strict.

Theorem 7. Let f be submodular, normalized, and increasing. Then (Lf , sgn) is consistent if and
only if f is modular.

Proof. If f is modular, then F is linear, and Lf (·; p) is linear on [−1, 1]k. We conclude that Lf (·; p)
is minimized at a vertex of the hypercube, meaning Lf embeds 2`f . (Equivalently, there is always an
optimal report (A, ∅) ∈ R̂ for ˆ̀f .) Calibration and consistency then follow.

Now suppose f is submodular but not modular. As f is increasing, we will assume without loss of
generality that f({i}) > 0 for all i ∈ N , which is equivalent to f(S) > 0 for all S 6= ∅; otherwise,
f(T ) = f(T \ {i}) for all T ⊆ N , so discard i from N and continue. In particular, we have
{∅} = arg minS⊆N f(S).

Define ε = f̄/(2f̄ − f(N)), which is strictly positive by Lemma 16 and submodularity of f . Let
p = (1− ε)p̄+ εδ∅, where again p̄ is the uniform distribution, and δ∅ is the point distribution on ∅.
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From Lemma 15, for all A ⊆ N we have

ˆ̀f ((A, ∅); p) = (1− ε)2f̄ + ε ˆ̀f ((A, ∅), ∅)
= (1− ε)2f̄ + ε 2f(A)

≥ (1− ε)2f̄ > f(N) = ˆ̀f ((∅, N); p) .

As we have some report with strictly lower loss than all reports of the form (A, ∅), we conclude that
we must have some (A,B) ∈ prop[ˆ̀f ](p) with B 6= ∅. We can also see that prop[`f ](p) = {∅} by
the second equality and the fact that {∅} = arg minS⊆N f(S).

Revisiting Lf , from Lemma 14 and the map between U and R̂, we have some u ∈ Γf (p) which
we can write u = χA + 1B . Let T ⊆ N such that χT = sgn(u) after breaking ties, and note that
A ⊆ T ⊆ A ∪ B. If T 6= ∅, we are done, as by the above ∅ optimizes `f , so we have violated
calibration and therefore consistency.

Otherwise, T = ∅, so A = ∅ as well. In this case, we will modify p to put weight on B 6= ∅ instead
of ∅, and will find that u is still optimal for Lf , again violating calibration. To show optimality, let
c = Lf (u; p) = Lf (p), and note that by symmetry of Lf , for any S ⊆ N we have c = Lf (pS)
as well, where pS = (1 − ε)p̄ + εδS . In particular, this will hold for pB . By Lemma 14, we have
Lf (u,B) = f(∅4B\B)+f(∅4B∪B) = f(B)+f(N) = f(∅4∅\B)+f(∅4∅∪B) = Lf (u, ∅).
Thus, Lf (u, pB) = (1− ε)Lf (u, p̄) + εLf (u,B) = (1− ε)Lf (u, p̄) + εLf (u, ∅) = Lf (u, p) = c,
so u is still optimal. As χB 6= χT = sgn(u), we are done.

F Top-k surrogate

Throughout this section, consider the surrogate and discrete loss
Lk(u)y =

(
1
k

∑k
i=1(u+ 1− ey)[i] − uy

)
+

given in Equation 9.

Lemma 17. Lk is a polyhedral loss.

Proof. Observe Lk can be written as the pointwise max of
(
n
k

)
+ 1 terms, where the

(
n
k

)
terms are

selecting the k elements of u + 1 − ey, and the max comes from selecting the ui elements with
highest weight.
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