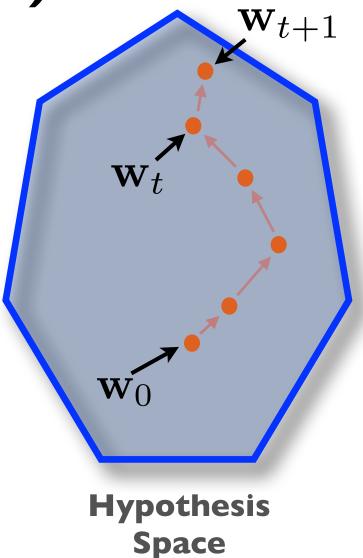
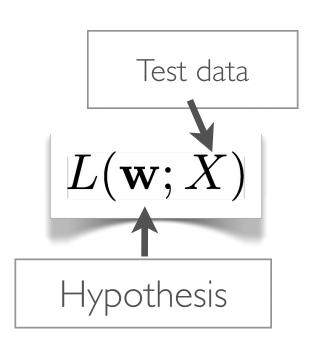

A COLLABORATIVE MECHANISM FOR CROWDSOURCING PREDICTION PROBLEMS

Jacob Abernethy (UPenn) + Rafael Frongillo (UC Berkeley)

ML Competitions and their Design Problems




- **Improper payout** structure: prize money for a single benchmark, but no bonus for further improvement?
- Competition is **anti-collaborative**: competitors have no incentive to reveal their strategies or predictions
- Winner-take-all **discourages team diversity**, leading instead to team merging

Crowdsourced Learning Mechanism (CLM)!

Loss function

PHASE I: For each t while market open

Market posts \mathbf{w}_t Trader "bets" on $(\mathbf{w}_t \rightarrow \mathbf{w}_{t+1})$ Trader pays $Cost(\mathbf{w}_t \rightarrow \mathbf{w}_{t+1})$ Market updates to \mathbf{w}_{t+1} EndWhile

PHASE 2: Test data X is revealed

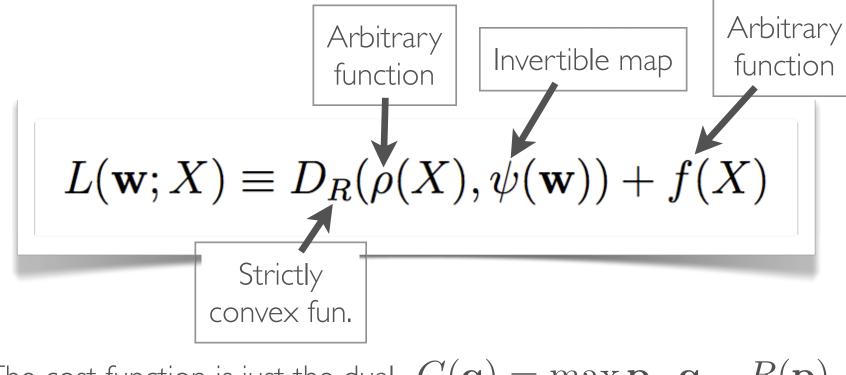
PHASE 3: For every t, trader t earns $Payout(\mathbf{w}_t \rightarrow \mathbf{w}_{t+1}; X)$

Participant gets paid by the amount they improved the hypothesis on the test data:

$$\overbrace{\mathsf{Payout}(\mathbf{w}_t \to \mathbf{w}_{t+1}; X) - \mathsf{Cost}(\mathbf{w}_t \to \mathbf{w}_{t+1})}^{\mathsf{Profit}(\mathbf{w}_t, \mathbf{w}_{t+1}, X)} = L(\mathbf{w}_t; X) - L(\mathbf{w}_{t+1}; X)$$

Intro to Prediction Markets

LMSR:
$$C(\mathbf{q}) := \frac{1}{\eta} \log \left(\sum_{i} \exp(\eta \mathbf{q}[i]) \right)$$


Share bundle: $\mathbf{r} \in \mathbb{R}^n$

Price of bundle:
$$C(\mathbf{q} + \mathbf{r}) - C(\mathbf{q})$$

Price vector $\nabla C(\mathbf{q}) := \left\langle \frac{\exp(\eta \mathbf{q}[i])}{\sum_{j} \exp(\eta \mathbf{q}[j])} \right\rangle_{i}$
Market maker risk $\leq \frac{\log N}{\eta}$

Prediction Markets as CLMs

When is CLM <=> Prediction Market?

You can use an "share-based" market to implement a CLM iff the loss function can be written as a *divergence*:

The cost function is just the dual $C(\mathbf{q}) = \max_{\mathbf{p}} \mathbf{p} \cdot \mathbf{q} - R(\mathbf{p})$

CLM = Better incentives!

- Offers **aligned incentives**, with payout proportional to contribution
- Mechanism has built-in aggregation
- Incentives encourage diversity, rewarding partial knowledge

Benefits of share-based CLMs

- Tractable budgeted betting
- Ability to neutralize risk
- Simple betting language

Examples

- Netflix: $L(w; X) = || w y ||^2$
- •Huffman codes: L(p; q) = KL(q || p) + H(q)

Future considerations

- Too much risk?
 - Use vouchers
- Insufficient feedback?
 - Several rounds of test data
- Overly restricted model?
 - Allow additions to feature space