
Online hypergraph matching: hiring teams of
secretaries

Rafael M. Frongillo
Advisor: Robert Kleinberg

May 29, 2008

1 Introduction

The goal of this paper is to find a competitive algorithm for the following
problem. We are given a hypergraph G = (X,E), |E| = n, with weighted
edges and maximum edge size k. We wish to maximize the weight of a
matching M ⊆ E of G, given that edges are revealed in a random order, and
that when an edge e is revealed the algorithm must decide either e ∈ M or
e /∈M .

Note that this is a generalization of the classic secretary problem; given
a set {wi} of weights for the candidates in the secretary problem, we create
a hypergraph with one vertex v and n edges, where the ith edge ei = {v}
has cardinality 1 and weight wi. Clearly a matching can be only one edge ei,
corresponding to choosing candidate i. In fact, when k = 1, the hypergraph
matching problem is just a collection of independent secretary problems, one
for each vertex.

2 Algorithm

The algorithm we present is very simple. For some a ∈ [0, 1] to be determined,
the algorithm does nothing while the first a ·n edges are revealed. After that,
a new edge is selected if it is in the maximum matching among all edges seen
so far, and does not intersect any edge already selected. Formally, this is the

1

procedure given as Algorithm 1, where maxmat(E ′) is the maximum weight
matching of any edge set E ′.

Algorithm 1 The algorithm.

Ẽ ← ∅
M ← ∅
for t = 1 to an do

pick e from E \ Ẽ uniformly at random
Ẽ ← Ẽ ∪ {e}

end for
for t = an+ 1 to n do

pick e from E \ Ẽ uniformly at random
Ẽ ← Ẽ ∪ {e}
if e ∈ maxmat(Ẽ) and Γ(e) ∩M = ∅ then
M ←M ∪ {e}

end if
end for

3 Analysis

3.1 Definitions

Let Et0 be a random variable representing the value of Ẽ in the algorithm
when t = t0; in other words, Et is the first t edges revealed. Similarly, et

is the edge revealed at time t. We will denote the weight of a matching M
as w(M). Finally, using the definition of maxmat from the previous section,
define Mt = maxmat(Et) as simply the max matching the algorithm sees at
time t. Note that Mn is the maximum matching overall; we therefore are
striving to come within a constant factor of w(Mn).

Some graph-theoretic shorthand will be useful; we denote the edges neigh-
boring of v in G by Γ(v) = {e ∈ E|v ∈ e}. Similarly, the neighbors of an edge
Γ(e) =

⋃
v∈e Γ(v) are all edges that share an endpoint with (i.e. intersect) e.

We now define some more complicated random variables that describe the
behavior of the algorithm.

Definition 1. We say t is a critical time for v if v is on the edge revealed
at time t, and that edge is in the matching Mt, which is the max matching

2

of all edges seen so far. Let crit(v, t) be the event that t is critical for v; then
formally, crit(v, t) := {et ∈ Mt, v ∈ et}. Similarly, crit(e, t) :=

⋃
v∈e crit(v, t)

is event that t is critical for e. Finally, nocrit(e, T) is the event that no t ∈ T
is critical for e.

Definition 2. Let avail(e, t) be the event that edge e is available to be selected
by the algorithm at time t; by the definition of the algorithm, this means that
e has not been seen before and no edge adjacent to the endpoints of e has been
selected.

Let sel(e, t) be the event that the algorithm selects edge e at time t. Sim-
ilarly, sel(e, T) =

⋃
t∈T sel(e, t) is the event that e is picked in a set T of

times.

3.2 Proof

To understand the behavior of the algorithm, we first ask how often a node
v changes its ‘assignement’ from one edge to another. Note that for our
reduction from the original secretary problem, the unconditional version of
this bound is exactly the bound for how often a better candidate appears.

Lemma 3. Let e be given and let v ∈ e. Then for all s < t,

Pr[crit(v, s)|e ∈Mt ∩ et = e] ≤ 1

s
,

Proof. Let e(F, v) = maxmat(F)∩Γ(v) be the (possibly empty) set containing
the edge adjacent to v in the max matching of the edge set F . Note that
the event e ∈ Mt ∩ et = e can be determined soley from Et−1 and e. Thus,
for some edge set F let q(F, e) be the predicate which is true when e /∈ F
and e ∈ maxmat(F ∪ e), and let Q(F, e) be the even that q(F, e) is true and
et = e. Then by this construction Q(Et−1, e) = e ∈ Mt ∩ et = e. Now let Fs

and F be edge sets with |Fs| = s and |F | = t − 1. Using this notation, we
see

Pr[crit(v, s) | Q(F, e) ∩ Es = Fs]

= Pr[es ∈ e(Fs, v) | Et−1 = F ∩ et = e ∩ Es = Fs]

=

{
0 if e(Fs, v) = ∅
1
t

otherwise
≤ 1

s
,

3

since even under the conditions on Et−1 and et, all orderings of the edges
e1, . . . , es are equally likely. Hence, we have

Pr[crit(v, s)|e ∈Mt ∩ et = e]

=
∑
F :

q(F,e)

Pr[crit(v, s) | Q(F, e)]

=
∑
F :

q(F,e)

∑
Fs⊆F

Pr[crit(v, s) | Q(F, e) ∩ Es = Fs] Pr[Es = Fs | Q(F, e)]

≤
∑
F :

q(F,e)

∑
Fs⊆F

1

s
Pr[Es = Fs | Q(F, e)]

=
1

s

∑
Fs: e/∈Fs

Pr[Es = Fs | et = e] =
1

s
.

Next, we find a constant which bounds the probability that an edge is
‘untouched’ in a time interval T .

Lemma 4. If T = [t1 + 1, t2] is some time interval and t ∈ T , then

Pr[avail(e, t)|e ∈Mt ∩ et = e] ≥
(

1 + k ln t1
t2

)
.

Proof. Recall that k is the maximum size of a hyperedge. First, from the
definition of avail, we have

Pr[avail(e, t)|e ∈Mt ∩ et = e]

= Pr[e /∈ Et1 ∩ nocrit(e, [t1 + 1, t− 1])|e ∈Mt ∩ et = e]

= Pr[nocrit(e, [t1 + 1, t− 1])|e ∈Mt ∩ et = e] . (1)

By Lemma 3 we have

Pr[nocrit(e, T ′)|e ∈Mt ∩ et = e]

≥ 1−
∑
v∈e

t−1∑
s=t1+1

Pr[crit(v, s)|e ∈Mt ∩ et = e]

≥ 1−
∑
v∈e

t−1∑
s=t1+1

1

s
≥ 1− k

t2∑
s=t1+1

1

s
(2)

4

Using Riemann sums to bound the harmonic series, we see that

t2∑
s=t1+1

1

s
≤ ln t2 − ln t1 = − ln

t1
t2

(3)

Combining (1), (2), and (3), we obtain the desired bound.

Using the bound from Lemma 4, we can bound how likely the algorithm
is to select a given edge in a given time interval. This is expressed in terms
of the probability that the revealed edge is in the current max matching Mt,
which in turn is bounded in Lemma 6.

Lemma 5. If T = [t1 + 1, t2] is a time interval,

Pr[sel(e, T)] ≥ 1

n

(
1 + k ln t1

t2

)∑
t∈T

Pr[e ∈Mt|et = e]

Proof. For an edge e to be selected, it must have been revealed at some time
t, at which point e was both available and in the max matching. Formally,

Pr[sel(e, T)] =
∑
t∈T

Pr[e ∈Mt ∩ et = e ∩ avail(e, t)]

=
∑
t∈T

Pr[avail(e, t)|e ∈Mt ∩ et = e] Pr[e ∈Mt|et = e] Pr[et = e]

≥ 1

n

∑
t∈T

(
1 + k ln t1

t2

)
Pr[e ∈Mt|et = e] ,

by Lemma 4 and the fact that Pr[et = e] = 1/n always, since it depends only
on the ordering of the edges. The result follows.

Lemma 6. ∑
e∈E

Pr[e ∈Mt|et = e]we ≥ w(Mn)

Proof. Let M̂t = Mn ∩ Et. Clearly M̂t is a matching, and since Mt =
maxmat(Et), we must have w(Mt) ≥ w(M̂t). Thus,

E[w(Mt)] ≥ E[w(M̂t)] =
∑

e∈Mn

Pr[e ∈ Et]we =
∑

e∈Mn

t

n
we =

t

n
w(Mn). (4)

5

Observe that

E[w({et} ∩Mt)] =
∑
e∈E

Pr[e ∈ {et} ∩Mt]we

=
∑
e∈E

Pr[e ∈Mt|et = e] Pr[et = e]we

=
1

n

∑
e∈E

Pr[e ∈Mt|et = e]we. (5)

On the other hand,

E[w({et} ∩Mt)] ≥
1

t
E[w(Mt)] ≥

1

n
w(Mn), (6)

where the last inequality is by (4). The result follows from combining (5)
and (6).

We can now put all of the lemmas together to obtain the competitive
constant for our algorithm.

Theorem 7. Algorithm 1 is a competitive algorithm for all k, with compet-
itive constant c(k) = Ω(1/k).

Proof. Let T = [an+ 1, n]. Then

E[weight gain in T] =
∑
e∈E

Pr[sel(e, T)] · we (7)

≥
∑
e∈E

α(T, k)

n

∑
t∈T

Pr[e ∈Mt|et = e] · we (8)

=

(
1 + k ln an

n

)
n

∑
t∈T

∑
e∈E

Pr[e ∈Mt|et = e] · we (9)

≥ 1 + k ln a

n

n∑
t=an+1

w(Mn) (10)

= (1− a)(1 + k ln a) · w(Mn), (11)

where (8) is by Lemma 5 and (10) is by Lemma 6.
To show our constant c(k) = maxa∈[0,1]{(1− a)(1 + k ln a)} is Ω(1/k), we

first give an upper bound. Since we must have a < 1 (otherwise, we select
no edges), we have

1 + k ln a < 1. (12)

6

Since we need c(k) > 0, and certainly 1− a ≥ 0, we must have

1 + k ln a > 0 =⇒ ln a > −1

k

=⇒ a > e−1/k > 1− 1

k

=⇒ 1− a < 1

k
. (13)

From (12) and (13) we conclude c(k) < 1/k.
To show a lower bound, we choose a particular value ak of a; set ak =

e−1/2k. Then using the power series for ex we have

1− a = 1−
(

1− 1

2k
+

1

8k2
− . . .

)
=

1

2k
+O

(
1
k2

)
. (14)

Since 1 + k ln ak = 1− 1/2 = 1/2 by construction, from (14) we have

c(k) =
1

2
· 1

2k
+O

(
1
k2

)
>

1

5k
(15)

for sufficiently large k. Thus, c(k) is Ω(1/k).

7

