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Standard Prediction Market

Obama Romney
$1 $1
$0.54 + $0.46 = 1

m Traders buy and sell contracts
B Prices fluctuate as demand changes

B Prices should reflect “consensus estimate”

y

What is this
in terms of the traders’ beliefs?
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Answer from Standard Theory

If traders have unbounded wealth and are risk neutral,
prices = last traders’ belief

If traders perform proper Bayesian updating,
prices = posterior given everyone’s private info

Big If’s!!
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Standard Equilibrium Analysis

Setting:
H Look at the distribution P of traders’ beliefs
B Fix some price m  of contract 1, say
B Look at total demand for that price
m Equilibriumis T* s.t. supply = demand:
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J demand(m*, p) dP(p) =0
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Standard Equilibrium Analysis

Setting:
H Look at the distribution P of traders’ beliefs
B Fix some price m  of contract 1, say
B Look at total demand for that price
m Equilibriumis T* s.t. supply = demand:

1
J demand(m*, p) dP(p) =0
0

Note: demand for Obama = supply for Romney



Prologue
[e]e]e] o]

Standard Equilibrium Analysis: Results

Manski, 2004
m Risk neutral traders = m* = quantile of P
m Equlibrium point (“Manski point”): m* such that
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Standard Equilibrium Analysis: Results

Manski, 2004
m Risk neutral traders = m* = quantile of P
m Equlibrium point (“Manski point”): m* such that

" pp)dp [ P(p)d 1
Jo PP _ [4. P(pYdP =>f PoYdp = *

* *
l-7 T -

Wolfers and Zitzewitz, 2006:
Wp-m

H Kelly bettor: demand = —
ml-m

linearin p

m Kelly bettors = m* = mean of P
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Standard Equilibrium Analysis: Really?
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Where is the equilibrium?
How do we use these prices to make predictions?
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A Stochastic Approach

Based on Othman and Sandholm, 2010:
B Look at a sequential market model
B Sample traders repeatedly from P
B Each trades one-by-one in the market

B The current prices adjust to trades
... using an automated market maker



The Stochastic Model
0@00

The Market Maker

Use model of Abernethy, Chen, Vaughan (2011)
® n mutually exclusive events
m Convex function C : R" — R
m Current quantity g € R"”
m Trade of d € R" costs C(q + d) — C(q)
m Prices: VC(q)
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The Market Maker

Use model of Abernethy, Chen, Vaughan (2011)
® n mutually exclusive events
m Convex function C : R" — R
m Current quantity g € R"”
m Trade of d € R" costs C(q + d) — C(q)
m Prices: VC(q)

Example: exponential weights

exp(q:)

C(q) =1 i VC(qi)==———
(q) =log (Zexp(q )) (1) S exp(@)
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The Demands

prices | | belief ~ |

dW, mn, p) eR"

d; is the demand for contract {
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The Full Model

Fort=1...T:
m Draw a trader (p, W) from (P, W) iid.
m Trader buys bundle d(W, m;, p)
B Price adjusts:

Mt < VC((VO) ™ (1) + d(W, e, p))
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First question: what is the “fixed point” of our process?
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The Stationary Point

First question: what is the “fixed point” of our process?
When does E[T¢+1] = m?

Define m° to be this stationary point
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Stationarity and Equilibrium

How does this 7° relate to the equilibrium 7*?
Othman and Sandholm:

B Binary market
m Risk neutral traders = m° =T
B Each invest € at a time
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Stationarity and Equilibrium: Our Model

Is this a general phenomenon?

Does m° = 1* in our more general model?
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Stationarity and Equilibrium: Our Model

Is this a general phenomenon?

Does m° = 1* in our more general model?

Theorem 1
For very general demands d, m°* - n* as W — 0

Obtain Othman and Sandholm result as a corollary
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Fixed vs. Continuous Prices

Same demands for both equilibrium and market-maker settings

t f

fixed continuous

Open question: does Theorem 1 hold with more sensible
demands?
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Market Making and Online Learning

Chen and Vaughan, 2009: Market maker update = FTRL

Follow the Regularized Leader:
B Losses /: € R
B Actions wt € A,
m Convex regularizer R

B Wy — argmin{th “W+ R(w)}
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Market Making and Online Learning

Chen and Vaughan, 2009: Market maker update = FTRL

Follow the Regularized Leader:
B Losses /: € R
B Actions wt € A,
m Convex regularizer R

B Wy — argmin{th “W+ R(w)}

Regret:

th-wt - ml_in (th)
t t i
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Matching Up the Final Losses

Important caveat: final loss terms do not match up completely
FTRL regret th - Wt —  min (th)
t t t i
Market Maker gain  C (Z dt) -C(0) - max (Z dt)
t ¢ t i



Machine Learning
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Matching Up the Final Losses

Important caveat: final loss terms do not match up completely
FTRL regret th - Wt —  min (th)
t t t i

Market Maker gain C (Z dt) —-C(0) - max (Z dt)
t ¢ t i
Z dt « Tl
t

Observation: They do line up in the fixed price model! di = —I¢
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FTRL — Mirror Descent

Observation: If losses are gradients, FTRL = Mirror Descent

Ley1 = Vf(wt)
And stochastic gradients — Stochastic Mirror Descent (SMD)

Liy1 = VF(w¢; &)

Theorem 2
If demands are (negative) gradients

d(W, m, p) = =VF(m; p, W),
our stochastic update is an SMD of

f(m) :=E[F(m; W, p)].
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Application: Kelly Bettors

Wp-—m
Back to Kelly bettors: dWw,np)=—
ml-m

(note: fixed-price model)

Can write d as a gradient of F(m;, W, p) :=W -KL(p, )

Corollary

The stochastic model with Kelly bettors is an SMD of

f(m) :=W-KL(p, m)

Note: generalizes Wolfers and Zitzewitz by Theorem 1!
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Back to Interpreting Prediction Markets

SMD has optimization guarantees:

Theorem (Duchi, Shalev-Shwartz, Singer, Tewari)

IFIVF(mt; p)II? < G? for all p, , and R is o-strongly convex, then
with probability 1 — 6,

mr) < mi b, oo 14,/|1
f(mr) < mnlnf(n)+(n—7_+¥) + ogg .
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Back to Interpreting Prediction Markets

SMD has optimization guarantees:

Theorem (Duchi, Shalev-Shwartz, Singer, Tewari)

IFIVF(mt; p)II? < G? for all p, , and R is o-strongly convex, then
with probability 1 — 6,

— ) < e D? G2n . 4/| 1
f(’lﬁ;\) = mﬂ'”f(n)'F(r’—Ti'g) + Ogg .

Time-averaged price!
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Average the Prices

So perhaps one should average market prices to form predictions

° Price
~ | — Avg price
© - - Avg belief
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Particularly for volitile markets Trade number
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Future Directions

B Sensible demands for stationarity (Theorem 1)
B Using results on learning rates to set market liquidity
® Try on real market data!

Square loss of price to mean belief for State 9
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