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Standard Prediction Market

Obama
$1

Romney
$1

$0.54 + $0.46 = 1

Traders buy and sell contracts
Prices fluctuate as demand changes

Prices should reflect “consensus estimate”

What is this
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Standard Prediction Market

Obama
$1

Romney
$1

$0.54 + $0.46 = 1

Traders buy and sell contracts
Prices fluctuate as demand changes

Prices should reflect “consensus estimate”“consensus estimate”

What is this
in terms of the traders’ beliefs?
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Answer from Standard Theory

If traders have unbounded wealth and are risk neutral,
prices = last traders’ belief

If traders perform proper Bayesian updating,
prices = posterior given everyone’s private info

Big If’s!!
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Standard Equilibrium Analysis

Setting:
Look at the distribution P of traders’ beliefs
Fix some price π of contract 1, say

Look at total demand for that price
Equilibrium is π∗ s.t. supply = demand:

∫ 1

0

demand(π∗, p) dP(p) = 0

Note: demand for Obama = supply for Romney
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Standard Equilibrium Analysis: Results

Manski, 2004:
Risk neutral traders =⇒ π∗ = quantile of P
Equlibrium point (“Manski point”): π∗ such that

∫ π∗

0
P(p)dp

1− π∗
=

∫ 1

π∗
P(p)dp

π∗
=⇒

∫ 1

π∗
P(p)dp = π∗

Wolfers and Zitzewitz, 2006:

Kelly bettor: demand =
W

π

p− π
1− π

linear in p

Kelly bettors =⇒ π∗ = mean of P
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Standard Equilibrium Analysis: Really?

Where is the equilibrium?
How do we use these prices to make predictions?
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A Stochastic Approach

Based on Othman and Sandholm, 2010:
Look at a sequential market model
Sample traders repeatedly from P
Each trades one-by-one in the market
The current prices adjust to trades

... using an automated market maker
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The Market Maker

Use model of Abernethy, Chen, Vaughan (2011)
n mutually exclusive events
Convex function C : Rn → R

Current quantity q ∈ Rn

Trade of d ∈ Rn costs C(q+ d)− C(q)
Prices: ∇C(q)

Example: exponential weights

C(q) = log

 

∑



exp(q)

!

∇C(q) =
exp(q)
∑

j exp(qj)



Prologue The Stochastic Model Stationarity Machine Learning Conclusion

The Market Maker

Use model of Abernethy, Chen, Vaughan (2011)
n mutually exclusive events
Convex function C : Rn → R

Current quantity q ∈ Rn

Trade of d ∈ Rn costs C(q+ d)− C(q)
Prices: ∇C(q)

Example: exponential weights

C(q) = log

 

∑



exp(q)

!

∇C(q) =
exp(q)
∑

j exp(qj)



Prologue The Stochastic Model Stationarity Machine Learning Conclusion

The Demands

d (W, π, p) ∈ Rn

wealth ∼W prices belief ∼ P

d is the demand for contract 
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The Full Model

For t = 1 . . . T:
Draw a trader (p,W) from (P,W) i.i.d.

Trader buys bundle d(W,πt, p)
Price adjusts:

πt+1 ← ∇C
�

(∇C)−1(πt) + d(W,πt, p)
�
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The Stationary Point

First question: what is the “fixed point” of our process?

When does E[πt+1] = πt?

Define πs to be this stationary point
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Stationarity and Equilibrium

How does this πs relate to the equilibrium π∗?

Othman and Sandholm:

Binary market
Risk neutral traders
Each invest ε at a time
︸
︷
︷
︸

=⇒ πs = π∗
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Stationarity and Equilibrium: Our Model

Is this a general phenomenon?

Does πs = π∗ in our more general model?

Theorem 1

For very general demands d, πs → π∗ as W→ 0

Obtain Othman and Sandholm result as a corollary
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Fixed vs. Continuous Prices

Same demands for both equilibrium and market-maker settings

fixed continuous

Open question: does Theorem 1 hold with more sensible
demands?
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Market Making and Online Learning

Chen and Vaughan, 2009: Market maker update = FTRL

Follow the Regularized Leader:
Losses ℓt ∈ Rn

Actions wt ∈ Δn
Convex regularizer R

wt+1 ← argmin
n

∑

ℓt ·w+ R(w)
o

Regret:
∑

t

ℓt ·wt −min


 

∑

t

ℓt

!


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Matching Up the Final Losses

Important caveat: final loss terms do not match up completely

FTRL regret
∑

t

ℓt ·wt − min


 

∑

t

ℓt

!



Market Maker gain C

 

∑

t

dt

!

− C(0) − mx


 

∑

t

dt

!


∑

t

dt · πt

Observation: They do line up in the fixed price model! dt = −ℓt
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FTRL→ Mirror Descent

Observation: If losses are gradients, FTRL = Mirror Descent

ℓt+1 = ∇ƒ (wt)

And stochastic gradients→ Stochastic Mirror Descent (SMD)

ℓt+1 = ∇F(wt;ξ)

Theorem 2

If demands are (negative) gradients

d(W,π, p) = −∇F(π;p,W),

our stochastic update is an SMD of

ƒ (π) := E[F(π;W,p)].
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Application: Kelly Bettors

Back to Kelly bettors: d(W,π, p) =
W

π

p− π
1− π

(note: fixed-price model)

Can write d as a gradient of F(π;W,p) :=W · KL(p, π)

Corollary

The stochastic model with Kelly bettors is an SMD of

ƒ (π) :=W · KL(p, π)

Note: generalizes Wolfers and Zitzewitz by Theorem 1!
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Back to Interpreting Prediction Markets

SMD has optimization guarantees:

Theorem (Duchi, Shalev-Shwartz, Singer, Tewari)

If ‖∇F(π;p)‖2 ≤ G2 for all p, π, and R is σ-strongly convex, then
with probability 1− δ,

ƒ ( πT ) ≤ min
π

ƒ (π) +

�

D2

ηT
+
G2η

2σ

�



1+ 4

È

log
1

δ



 .

Time-averaged price!
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Average the Prices

So perhaps one should average market prices to form predictions
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Particularly for volitile markets
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Future Directions

Sensible demands for stationarity (Theorem 1)
Using results on learning rates to set market liquidity
Try on real market data!
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thank you
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