0000 0000 0000 0000 0000 0000	Prologue	The Stochastic Model	Stationarity	Machine Learning	Conclusion

Interpreting Prediction Markets: a Stochastic Approach

Rafael Frongillo

Department of Computer Science University of California at Berkeley

July 1, 2012

Joint work with Nicolás Della Penna and Mark Reid

Prologue 00000	The Stochastic Model	Stationarity	Machine Learning	Conclusion

Work done while visiting ANU + NICTA

Prologue ●oooo	The Stochas	tic Model	Stationa 0000	rity	Machine Lear	ning	Conclusion
Standard	Predi	ction Mar	ket				
		Obama \$1		Romney \$1	/		
		\$0.54		\$0.46			

- Traders buy and sell contracts
- Prices fluctuate as demand changes
- Prices should reflect "consensus estimate"

Prologue ●oooo	The Stochas	tic Model	Stationa 0000	rity	Machine Lear	ning	Conclusion
Standard	Predi	ction Mar	ket				
		Obama \$1		Romney \$1	/		
		\$0.54		\$0.46			

Traders buy and sell contracts

- Prices fluctuate as demand changes
- Prices should reflect "consensus estimate"

Prologue ●oooo	The Stochas	tic Model	Stationa	rity	Machine Lear	ning	Conclusion 0000
Standard	Predi	ction Mar	ket				
		Obama \$1		Romney \$1	/		
		\$0 54		\$0.46			

- Traders buy and sell contracts
- Prices fluctuate as demand changes

Prices should reflect "consensus estimate"

Prologue ●oooo	The Stochastic Model	Stationa 0000	rity Ma	achine Learning	Conclusion
Standard	d Prediction M	larket			
	Obama \$1	a	Romney \$1		
	\$0.54	+	\$0.46	= 1	

- Traders buy and sell contracts
- Prices fluctuate as demand changes

Prices should reflect "consensus estimate"

Prologue ●ooooo	The Stochas	tic Model	Stationa 0000	rity	Machine Lea	rning	Conclusion
Standard	Predi	ction Mar	ket				
		Obama \$1		Romney \$1	/		
		\$0.54	+	\$0.46	=	1	

- Traders buy and sell contracts
- Prices fluctuate as demand changes
- Prices should reflect "consensus estimate"

Prologue ●oooo	The Stochas	tic Model	Stationa 0000	rity	Machine Lear	ning	Conclusion
Standard	Predi	ction Mar	ket				
		Obama \$1		Romney \$1	/		
		\$0.54	+	\$0.46	=	1	

- Traders buy and sell contracts
- Prices fluctuate as demand changes
- Prices should reflect "consensus estimate"

```
What is this?
```


- Traders buy and sell contracts
- Prices fluctuate as demand changes
- Prices should reflect "consensus estimate"

```
What is this in terms of the traders' beliefs?
```

Prologue o●ooo	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Answer fr	om Standard T	heory		

If traders have unbounded wealth and are risk neutral, prices = **last traders' belief**

If traders perform proper Bayesian updating, prices = **posterior** given everyone's private info

Big If's!!

Prologue o●ooo	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Answer fr	om Standard Tl	heory		

If traders have unbounded wealth and are risk neutral, prices = **last traders' belief**

If traders perform proper Bayesian updating, prices = **posterior** given everyone's private info

Prologue o●ooo	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Answer fr	om Standard T	heorv		

If traders have unbounded wealth and are risk neutral, prices = last traders' belief

If traders perform proper Bayesian updating, prices = **posterior** given everyone's private info

Big If's!!

Prologue oo●oo	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion		
Standard Equilibrium Analysis						

Setting:

- Look at the *distribution P* of traders' beliefs
- Fix some price π of contract 1, say
- Look at total demand for that price
- Equilibrium is π^* s.t. supply = demand:

$$\int_0^1 \operatorname{demand}(\pi^*, p) \, d\mathcal{P}(p) = 0$$

Note: demand for Obama = supply for Romney

Prologue oo●oo	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion	
Standard Equilibrium Analysis					

Setting:

- Look at the *distribution P* of traders' beliefs
- Fix some price π of contract 1, say
- Look at total demand for that price

.

Equilibrium is π^* s.t. supply = demand:

$$\int_0^1 \operatorname{demand}(\pi^*, p) \, d\mathcal{P}(p) = 0$$

Note: demand for Obama = supply for Romney

Prologue ooo●o	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Standard	Equilibrium An	alysis: Res	ults	

Manski, 2004:

E Risk neutral traders $\implies \pi^* = \text{quantile of } \mathcal{P}$

Equilibrium point ("Manski point"): π^* such that

$$\frac{\int_0^{\pi^*} \mathcal{P}(p) dp}{1 - \pi^*} = \frac{\int_{\pi^*}^1 \mathcal{P}(p) dp}{\pi^*} \implies \int_{\pi^*}^1 \mathcal{P}(p) dp = \pi^*$$

Wolfers and Zitzewitz, 2006:

Kelly bettor: demand =
$$\frac{W}{\pi} \frac{p - \pi}{1 - \pi}$$
 linear in p

• Kelly bettors $\implies \pi^*$ = mean of \mathcal{P}

Prologue ooo●o	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Standard	Equilibrium Ar	nalysis: Res	ults	

Manski, 2004:

E Risk neutral traders $\implies \pi^* = \text{quantile of } \mathcal{P}$

Equiibrium point ("Manski point"): π^* such that

$$\frac{\int_0^{\pi^*} \mathcal{P}(p) dp}{1 - \pi^*} = \frac{\int_{\pi^*}^1 \mathcal{P}(p) dp}{\pi^*} \implies \int_{\pi^*}^1 \mathcal{P}(p) dp = \pi^*$$

Wolfers and Zitzewitz, 2006:

Kelly bettor: demand =
$$\frac{W}{\pi} \frac{p - \pi}{1 - \pi}$$
 linear in p

• Kelly bettors $\implies \pi^*$ = mean of \mathcal{P}

Standard Equilibrium Analysis: Really?

Where is the equilibrium? How do we use these prices to make predictions?

Standard Equilibrium Analysis: Really?

Where is the equilibrium?

How do we use these prices to make predictions?

Standard Equilibrium Analysis: Really?

Where is the equilibrium? How do we use these prices to make predictions?

Prologue	The Stochastic Model ●○○○	Stationarity 0000	Machine Learning	Conclusion
A Stocha	stic Approach			

Based on Othman and Sandholm, 2010:

- Look at a sequential market model
- Sample traders repeatedly from \mathcal{P}
- Each trades one-by-one in the market
- The current prices adjust to trades ... using an automated market maker

Prologue 00000	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
The Marl	ket Maker			

Use model of Abernethy, Chen, Vaughan (2011)

- n mutually exclusive events
- Convex function $C : \mathbb{R}^n \to \mathbb{R}$
- Current quantity $q \in \mathbb{R}^n$
- Trade of $d \in \mathbb{R}^n$ costs C(q + d) C(q)
- Prices: $\nabla C(q)$

Example: exponential weights

$$C(q) = \log\left(\sum_{i} \exp(q_i)\right) \qquad \nabla C(q_i) = \frac{\exp(q_i)}{\sum_{j} \exp(q_j)}$$

Prologue	The Stochastic Model ○●○○	Stationarity	Machine Learning	Conclusion
The Mark	ket Maker			

Use model of Abernethy, Chen, Vaughan (2011)

- n mutually exclusive events
- Convex function $C : \mathbb{R}^n \to \mathbb{R}$
- Current quantity $q \in \mathbb{R}^n$
- Trade of $d \in \mathbb{R}^n$ costs C(q + d) C(q)
- Prices: $\nabla C(q)$

Example: exponential weights

$$C(q) = \log\left(\sum_{i} \exp(q_i)\right) \qquad \nabla C(q_i) = \frac{\exp(q_i)}{\sum_{j} \exp(q_j)}$$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
The Der	nands			

 d_i is the demand for contract i

Prologue 00000	The Stochastic Model 000●	Stationarity 0000	Machine Learning	Conclusion
The Ful	l Model			

For t = 1 ... T:

- Draw a trader (p, W) from $(\mathcal{P}, \mathcal{W})$ *i.i.d.*
- Trader buys bundle $d(W, \pi_t, p)$

Price adjusts:

$$\pi_{t+1} \leftarrow \nabla C \Big((\nabla C)^{-1}(\pi_t) + d(W, \pi_t, \rho) \Big)$$

Prologue	The Stochastic Model	Stationarity ••••	Machine Learning	Conclusion
The Stati	onary Point			

First question: what is the "fixed point" of our process?

When does $\mathbb{E}[\pi_{t+1}] = \pi_t$?

Define π^s to be this stationary point

Prologue	The Stochastic Model	Stationarity ●000	Machine Learning	Conclusion
The Station	onary Point			

First question: what is the "fixed point" of our process?

When does $\mathbb{E}[\pi_{t+1}] = \pi_t$?

Define π^s to be this stationary point

Prologue	The Stochastic Model	Stationarity ●000	Machine Learning	Conclusion
The Stati	onary Point			

First question: what is the "fixed point" of our process?

When does $\mathbb{E}[\pi_{t+1}] = \pi_t$?

Define π^s to be this stationary point

Prologue 00000	The Stochastic Model	Stationarity ○●○○	Machine Learning	Conclusion
Stationarity and Equilibrium				

How does this π^s relate to the equilibrium π^* ?

Othman and Sandholm:

Binary market
Risk neutral traders
Each invest
$$\epsilon$$
 at a time
 \Rightarrow $\pi^s = \pi^*$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Stationari	tv and Equilibri	um: Our M	odel	

Is this a general phenomenon?

Does $\pi^s = \pi^*$ in our more general model?

Theorem 1

For very general demands $d, \pi^s \rightarrow \pi^*$ as $W \rightarrow 0$

Obtain Othman and Sandholm result as a corollary

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Stationari	tv and Equilibri	um: Our M	odel	

Is this a general phenomenon?

Does $\pi^s = \pi^*$ in our more general model?

Theorem 1

For very general demands $d, \pi^s \rightarrow \pi^*$ as $W \rightarrow 0$

Obtain Othman and Sandholm result as a corollary

Prologue 00000	The Stochastic Model	Stationarity ○○●○	Machine Learning	Conclusion
Stationari	tv and Equilibri	um: Our M	odel	

Is this a general phenomenon?

Does $\pi^s = \pi^*$ in our more general model?

Theorem 1

For very general demands $d, \pi^s \to \pi^*$ as $W \to 0$

Obtain Othman and Sandholm result as a corollary

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion
Fixed vs.	Continuous Pr	ices		

Same demands for both equilibrium and market-maker settings

fixed continuous

Open question: does Theorem 1 hold with more sensible demands?

Same demands for both equilibrium and market-maker settings t f fixed continuous

Open question: does Theorem 1 hold with more sensible demands?

Same demands for both equilibrium and market-maker settings t f fixed continuous

Open question: does Theorem 1 hold with more sensible demands?

Prologue 00000	The Stochastic Model	Stationarity 0000	Machine Learning ●੦੦੦	Conclusion	
Market Making and Online Learning					

Chen and Vaughan, 2009: Market maker update = FTRL

Follow the Regularized Leader:

- Losses $l_t \in \mathbb{R}^n$
- Actions $\mathbf{w}_t \in \Delta_n$
- Convex regularizer R

•
$$\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}\left\{\sum \ell_t \cdot \mathbf{w} + R(\mathbf{w})\right\}$$

Regret:

$$\sum_{t} \boldsymbol{\ell}_t \cdot \boldsymbol{w}_t - \min_i \left(\sum_{t} \boldsymbol{\ell}_t \right)_i$$

Prologue 00000	The Stochastic Model	Stationarity 0000	Machine Learning ●੦੦੦	Conclusion	
Market Making and Online Learning					

Chen and Vaughan, 2009: Market maker update = FTRL

Follow the Regularized Leader:

- Losses $l_t \in \mathbb{R}^n$
- Actions $\mathbf{w}_t \in \Delta_n$
- Convex regularizer R

•
$$\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}\left\{\sum \ell_t \cdot \mathbf{w} + R(\mathbf{w})\right\}$$

Regret:

$$\sum_{t} \boldsymbol{\ell}_t \cdot \boldsymbol{w}_t - \min_i \left(\sum_{t} \boldsymbol{\ell}_t \right)_i$$

Important caveat: final loss terms do not match up completely

FTRL regret
$$\sum_{t} \ell_{t} \cdot \mathbf{w}_{t} - \min_{i} \left(\sum_{t} \ell_{t} \right)_{i}$$
Market Maker gain $C\left(\sum_{t} d_{t} \right) - C(0) - \max_{i} \left(\sum_{t} d_{t} \right)_{i}$

Observation: They do line up in the fixed price model! $d_t = -l_t$

Important caveat: final loss terms do not match up completely

FTRL regret
$$\sum_{t} \ell_{t} \cdot \mathbf{w}_{t} - \min_{i} \left(\sum_{t} \ell_{t} \right)_{i}$$

Market Maker gain
$$C\left(\sum_{t} d_{t} \right) - C(0) - \max_{i} \left(\sum_{t} d_{t} \right)_{i}$$
$$\sum_{t} d_{t} \cdot \pi_{t}$$

Observation: They *do* line up in the fixed price model! $d_t = -\ell_t$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning oo●o	Conclusion
FTRL → Mirror Descent				

Observation: If losses are *gradients*, FTRL = Mirror Descent

 $\ell_{t+1} = \nabla f(\mathbf{w}_t)$

And stochastic gradients → Stochastic Mirror Descent (SMD)

 $\ell_{t+1} = \nabla F(\mathbf{w}_t; \boldsymbol{\xi})$

Theorem 2

If demands are (negative) gradients

 $d(W, \pi, p) = -\nabla F(\pi; p, W),$

our stochastic update is an SMD of

 $f(\pi) := \mathbb{E}[F(\pi; W, p)].$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning ○○●○	Conclusion
FTRI –	→ Mirror Desce	nt		

Observation: If losses are *gradients*, FTRL = Mirror Descent

 $\ell_{t+1} = \nabla f(\mathbf{w}_t)$

And *stochastic* gradients → *Stochastic* Mirror Descent (SMD)

 $\ell_{t+1} = \nabla F(\mathbf{w}_t; \xi)$

Theorem 2

If demands are (negative) gradients

 $d(W, \pi, p) = -\nabla F(\pi; p, W),$

our stochastic update is an SMD of

 $f(\pi) := \mathbb{E}[F(\pi; W, p)].$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning ○○●○	Conclusion
FTRI -	→ Mirror Desce	nt		

Observation: If losses are *gradients*, FTRL = Mirror Descent

 $\ell_{t+1} = \nabla f(\mathbf{w}_t)$

And *stochastic* gradients → *Stochastic* Mirror Descent (SMD)

 $\ell_{t+1} = \nabla F(\mathbf{w}_t; \xi)$

Theorem 2

If demands are (negative) gradients

$$d(W, \pi, p) = -\nabla F(\pi; p, W),$$

our stochastic update is an SMD of

 $f(\pi) := \mathbb{E}[F(\pi; W, p)].$

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning ○○○●	Conclusion
Application: Kelly Bettors				

Back to Kelly bettors:

$$d(W,\pi,p)=\frac{W}{\pi}\frac{p-\pi}{1-\pi}$$

(note: fixed-price model)

Can write d as a gradient of $F(\pi; W, p) := W \cdot KL(p, \pi)$

Corollary

The stochastic model with Kelly bettors is an SMD of

$$f(\pi) := \overline{W} \cdot KL(\overline{p}, \pi)$$

Note: generalizes Wolfers and Zitzewitz by Theorem 1!

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning ○○○●	Conclusion
Application: Kelly Bettors				

Back to Kelly bettors:

$$d(W,\pi,p)=\frac{W}{\pi}\,\frac{p-\pi}{1-\pi}$$

(note: fixed-price model)

Can write d as a gradient of $F(\pi; W, p) := W \cdot KL(p, \pi)$

Corollary

The stochastic model with Kelly bettors is an SMD of

 $f(\pi) := \overline{W} \cdot KL(\overline{p}, \pi)$

Note: generalizes Wolfers and Zitzewitz by Theorem 1!

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning ○○○●	Conclusion
Applicatio	on: Kelly Betto	ors		

Back to Kelly bettors:

$$d(W,\pi,p)=\frac{W}{\pi}\,\frac{p-\pi}{1-\pi}$$

(note: fixed-price model)

Can write d as a gradient of $F(\pi; V)$

$$F(\pi; W, p) := W \cdot KL(p, \pi)$$

Corollary

The stochastic model with Kelly bettors is an SMD of

$$f(\pi) := \overline{W} \cdot KL(\overline{\rho}, \pi)$$

Note: generalizes Wolfers and Zitzewitz by Theorem 1!

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion ●○○○				
Back to Interpreting Prediction Markets								

SMD has optimization guarantees:

Theorem (Duchi, Shalev-Shwartz, Singer, Tewari)

If $\|\nabla F(\pi; p)\|^2 \leq G^2$ for all p, π , and R is σ -strongly convex, then with probability $1 - \delta$,

$$f(\overline{\pi}_T) \leq \min_{\pi} f(\pi) + \left(\frac{D^2}{\eta T} + \frac{G^2 \eta}{2\sigma}\right) \left(1 + 4\sqrt{\log \frac{1}{\delta}}\right)$$

Time-averaged price!

Prologue	The Stochastic Model	Stationarity 0000	Machine Learning	Conclusion •ooo
Back to I	nterpreting P	rediction Mar	kets	

SMD has optimization guarantees:

Theorem (Duchi, Shalev-Shwartz, Singer, Tewari)

If $\|\nabla F(\pi; p)\|^2 \leq G^2$ for all p, π , and R is σ -strongly convex, then with probability $1 - \delta$,

$$f(\overline{\pi}_{T}) \leq \min_{\pi} f(\pi) + \left(\frac{D^{2}}{\eta T} + \frac{G^{2} \eta}{2\sigma}\right) \left(1 + 4\sqrt{\log \frac{1}{\delta}}\right)$$

Time-averaged price!

So perhaps one should average market prices to form predictions

Particularly for volitile markets

Trade number

- Sensible demands for stationarity (Theorem 1)
- Using results on *learning rates* to set market *liquidity*
- Try on real market data!

Square loss of price to mean belief for State 9

Trades

 blogue
 The Stochastic Model
 Stationarity

 0000
 0000
 0000

Machine Learning

Conclusion ○○○●

thank you