Background

Main Result

Mechanism Design

Properties 000000

General Characterizations of Truthfulness via Convex Analysis

Rafael Frongillo

Department of Computer Science University of California at Berkeley

November 29, 2012

Joint work with Ian Kash (MSRC)

Background

Main Result

Mechanism Design

Properties

Ian Says Hi!

Background ●00000 Main Result

Mechanism Design

Properties

Warm-up: Convex Functions

Definition

 $G : \mathcal{T} \rightarrow \mathbb{R}$ is *convex* if for all $x, y \in \mathcal{T}$ and all $\alpha \in [0, 1]$

 $\alpha G(x) + (1-\alpha)G(y) \geq G(\alpha x + (1-\alpha)y)$

Background ●00000 Main Result

Mechanism Design

Properties

Warm-up: Convex Functions

Definition

A linear function $dG_t : \mathcal{T} \rightarrow \mathbb{R}$ is a *subgradient* to *G* at *t* if

 $\forall t' \in \mathcal{T} \quad G(t') \ge G(t) + dG_t(t'-t)$

Background o●oooo	Main Result	Mechanism Design	Properties

Pointwise Supremum

Fact

If G_i are convex functions for $i \in I$, then G is convex:

$$G(t) := \sup_{i \in I} G_i(t)$$

Background 00●000	Main Result 000000	Mechanism Design	Properties
Mechanism D	esian		

Single-player mechanism:

- Outcome space *O* possible allocations
- Type space $\mathcal{T} = (\mathcal{O} \rightarrow \mathbb{R})$ valuation functions
- Allocation rule $a : T \rightarrow O$ reports to outcomes
- Payment rule $p : T \rightarrow \mathbb{R}$ reports to payments

Bidder with type t who reports $t' \in \mathcal{T}$ has net utility

U(t',t) = t(a(t')) - p(t')

Truthfulness condition

 $\forall t, t' \in \mathcal{T} \ U(t', t) \leq U(t, t)$

Background	Main Result	Mechanism Design	Properties
000000			
March and a	D		
Nicchanier	n Libelan		

Single-player mechanism:

- Outcome space \mathcal{O} possible allocations
- Type space $\mathcal{T} = (\mathcal{O} \rightarrow \mathbb{R})$ valuation functions
- Allocation rule $a : T \rightarrow O$ reports to outcomes
- Payment rule $p : T \rightarrow \mathbb{R}$ reports to payments

Bidder with type *t* who reports $t' \in \mathcal{T}$ has net utility

$$U(t',t) = t(a(t')) - p(t')$$

Truthfulness condition

 $\forall t, t' \in \mathcal{T} \ U(t', t) \leq U(t, t)$

Background oo●ooo	Main Result 000000	Mechanism Design	Properties
Mechanism De	sign		

Single-player mechanism:

- Outcome space *O* possible allocations
- Type space $\mathcal{T} = (\mathcal{O} \rightarrow \mathbb{R})$ valuation functions
- Allocation rule $a : T \rightarrow O$ reports to outcomes
- Payment rule $p : T \rightarrow \mathbb{R}$ reports to payments

Bidder with type *t* who reports $t' \in \mathcal{T}$ has net utility

$$U(t',t) = t(a(t')) - p(t')$$

$$\forall t, t' \in \mathcal{T} \ U(t', t) \leq U(t, t)$$

Background ooo●oo	Main Result	Mechanism Design	Properties 000000
Mverson 1981			

For single-parameter mechanisms:

Theorem

a is implementable \iff a is monotone

Implementable means payments p making (a, p) truthful

Equivalently:

Theorem

a is implementable $\iff \exists G : \mathcal{T} \rightarrow \mathbb{R}$ convex s.t. a is a subgradient to G

G is the consumer surplus

Background 000●00	Main Result	Mechanism Design	Properties 000000
Myerson 1981			

For single-parameter mechanisms:

a is implementable \iff a is monotone

Implementable means payments p making (a, p) truthful

Equivalently:

Theorem

Theorem

a is implementable $\iff \exists G : \mathcal{T} \rightarrow \mathbb{R}$ convex s.t. a is a subgradient to G

G is the consumer surplus

Background ooooooo	Main Result	Mechanism Design	Properties
Scoring Rules			

- Outcome space *O* mutually exclusive events
- Private belief $p \in \Delta_{\mathcal{O}}$ probabilities over outcomes
- Scoring rule $S : \Delta_{\mathcal{O}} \times \mathcal{O} \rightarrow \mathbb{R}$ score of report given an outcome

Expected score of report p' given truth p is

$$S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$$

$$\forall p, p' \ S(p', p) \leq S(p, p)$$

Background ooooooo	Main Result	Mechanism Design	Properties
Scoring Rules			

- Outcome space *O* mutually exclusive events
- Private belief $p \in \Delta_{\mathcal{O}}$ probabilities over outcomes
- Scoring rule $S : \Delta_{\mathcal{O}} \times \mathcal{O} \rightarrow \mathbb{R}$ score of report given an outcome

Expected score of report p' given truth p is

$$S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$$

$$\forall p, p' \ S(p', p) \leq S(p, p)$$

Background ooooooo	Main Result	Mechanism Design	Properties
Scoring Rules			

- Outcome space *O* mutually exclusive events
- Private belief $p \in \Delta_{\mathcal{O}}$ probabilities over outcomes
- Scoring rule $S : \Delta_{\mathcal{O}} \times \mathcal{O} \rightarrow \mathbb{R}$ score of report given an outcome

Expected score of report p' given truth p is

$$S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$$

$$\forall p, p' \ S(p', p) \leq S(p, p)$$

Background

Main Result

Mechanism Design

Properties

Gneiting and Raftery 2007

Theorem

Scoring rule S is truthful \iff there is some convex $G : \Delta_{\mathcal{O}} \rightarrow \mathbb{R}$ with subgradients $\{ dG_p \}$ such that

$$S(p, o) = G(p) + dG_p (\mathbf{1}_o - p)$$

Background Main Result	Mechanism Design	Properties

What's the Connection?

Mechanism:

- Outcomes *O*
- Type $\mathcal{T} = (\mathcal{O} \rightarrow \mathbb{R})$
- Utility U(t', t)

Scoring rule:

- Outcomes O
- Belief $p \in \Delta_{\mathcal{O}}$
- Score S(p', p)

 $\frac{\text{Truthfulness}}{U(t',t) \le U(t,t)}$

Truthfulness $S(p', p) \le S(p, p)$

 $U(t',t) = t(a(t')) - p(t') \qquad S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$ $= \langle t, \mathbf{1}_{a(t')} \rangle - p(t') \qquad = \langle p, S(p', \cdot) \rangle$

Background	Main Result	Mechanism Design	Properties
000000	●ooooo		000000
What's the	Connection?		

Mechanism:

- Outcomes *O*
- Type $\mathcal{T} = (\mathcal{O} \rightarrow \mathbb{R})$
- Utility U(t', t)

Scoring rule:

- Outcomes O
- Belief $p \in \Delta_{\mathcal{O}}$
- Score S(p', p)

 $\frac{\text{Truthfulness}}{U(t',t) \le U(t,t)}$

 $\frac{\text{Truthfulness}}{S(p', p) \le S(p, p)}$

 $U(t',t) = t(a(t')) - p(t') \qquad \qquad S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$ $= \langle t, \mathbf{1}_{o(t')} \rangle - p(t') \qquad \qquad = \langle p, S(p', \cdot) \rangle$

Background	Main Result ●ooooo	Mechanism Design	Properties
What's	the Connection?		
Mech	anism:	Scoring rule:	
	Dutcomes $\mathcal O$	Outcomes O	
– 7	$Fype \ \mathcal{T} = (\mathcal{O} \to \mathbb{R})$	Belief $p \in \Delta_{\mathcal{O}}$	
🔳 L	Jtility U(t', t)	Score $S(p', p)$	
	Truthfulness	Truthfulness	;
l	$U(t',t) \leq U(t,t)$	$S(p',p) \leq S(p)$, p)

 $U(t',t) = t(a(t')) - p(t') \qquad S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$ $= \langle t, \mathbf{1}_{o(t')} \rangle - p(t') \qquad = \langle p, S(p', \cdot) \rangle$

Ba	ckground Main Result	Mechanism Design Prop 0000 000	erties 000				
V	What's the Connection?						
	Mechanism:	Scoring rule:					
	Outcomes O	Outcomes O					
	Type $\mathcal{T} = (\mathcal{O} \to \mathbb{R})$	Belief $p \in \Delta_{\mathcal{O}}$					
	Utility $U(t', t)$	Score $S(p', p)$					
	Truthfulness	Truthfulness					
	$U(t',t) \leq U(t,t)$	$S(p',p) \leq S(p,p)$					
	U(t',t) = t(a(t')) - p(t')	$S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p',o) \right]$					

Backg	round oo	Main Result ●ooooo		Mechanism Design 0000	Properties		
Wł	What's the Connection?						
	Mechanism: Outcomes C Type $T = (C$ Utility $U(t', t')$	$\mathcal{O} \rightarrow \mathbb{R}$)	Sc	oring rule: Outcomes \mathcal{O} Belief $p \in \Delta_{\mathcal{O}}$ Score $S(p', p)$			
	$\frac{\text{Truthfuln}}{U(t',t) \leq U}$	ess J(t, t)		$\frac{\text{Truthfulness}}{S(p',p) \le S(p,p)}$))		
	$U(t',t) = t(a(t') = \langle t, 1_{d} \rangle$	f(t)) - p(t') $p_{a(t')} \rangle - p(t')$	S	$S(p',p) := \mathop{\mathbb{E}}_{o \sim p} \left[S(p') = \langle p, S(p') \rangle \right]$	ɔ′, o)] ′, ·) ⟩		

Background Main Result Mechanism Design Properti oococo o•ooo ococo ococo				
	Background 000000	Main Result o●oooo	Mechanism Design	Properties

Our Model: Affine Score

- **Type space** T any subset of a vector space
- Reward space $\mathcal{A} \subseteq \operatorname{Aff}(\mathcal{T} \to \mathbb{R})$ affine functions on types
- Affine score $S : \mathcal{T} \rightarrow \mathcal{A}$

Truthfulness condition

$S(t')(t) \leq S(t)(t)$

Observation: $G(t) := \sup_{t'} S(t')(t)$ convex and S truthful $\implies G(t) = S(t)(t)$

Background Main Result	Mechanism Design	Properties

Our Model: Affine Score

Type space T any subset of a vector space

- Reward space $\mathcal{A} \subseteq Aff(\mathcal{T} \to \mathbb{R})$ affine functions on types
- Affine score $S : \mathcal{T} \rightarrow \mathcal{A}$

Truthfulness condition

$S(t')(t) \leq S(t)(t)$

Observation: $G(t) := \sup_{t'} S(t')(t)$ convex and S truthful $\implies G(t) = S(t)(t)$

Background 000000	Main Result o●oooo	Mechanism Design	Properties
Our Model: A	Affine Score		

- - . .

- Type space \mathcal{T} any subset of a vector space
- Reward space $\mathcal{A} \subseteq Aff(\mathcal{T} \to \mathbb{R})$ affine functions on types
- Affine score $S : \mathcal{T} \rightarrow \mathcal{A}$

Truthfulness condition

 $S(t')(t) \leq S(t)(t)$

Observation: $G(t) := \sup_{t'} S(t')(t)$ convex and S truthful $\implies G(t) = S(t)(t)$ Background

Main Result

Mechanism Design

Properties

A General Truthfulness Characterization

Theorem

Affine score $S : T \to A$ is truthful if and only if there exists some convex $G : Conv(T) \to \mathbb{R}$, and subgradients $\{dG_t\}$, such that

$$S(t')(t) = G(t') + dG_{t'}(t - t').$$

Techniques from Gneiting-Raftery and Archer-Kleinberg Immediately gives previous scoring rule and mechanism characterizations

Background	Main Result oooeoo	Mechanism Design	Properties
Proof: Con	lex ${\cal T}$		

Proof of \Leftarrow : $S(t')(t) = G(t') + dG_{t'}(t - t')$ $\leq G(t) = S(t, t)$ by def. subgradient

Proof of \implies :

 $G(t) := \sup_{t \in S} S(t')(t)$ convex as pointwise supremumb

Define $dG_t(\cdot) = S_t(t)(\cdot)$ linear part of S(t)

 $S(t)(\cdot)$ subgradient to G at t: by truthfulness

Background	Main Result ooo●oo	Mechanism Design	Properties
Proof: Con	Vex \mathcal{T}		

Proof of
$$\Leftarrow$$
:

$$S(t')(t) = G(t') + dG_{t'}(t - t')$$

$$\leq G(t) = S(t, t) \quad by \ def. \ subgradient$$

Proof of \implies :

• $G(t) := \sup_{t'} S(t')(t)$ convex as pointwise supremum!

- Define $dG_t(\cdot) = S_l(t)(\cdot)$ linear part of S(t)
- **S(t)(\cdot) subgradient to G at t:** by truthfulness

Background	Main Result ooo●oo	Mechanism Design	Properties
Proof: Con	Vex \mathcal{T}		

Proof of
$$\Leftarrow$$
:

$$S(t')(t) = G(t') + dG_{t'}(t - t')$$

$$\leq G(t) = S(t, t) \quad by \ def. \ subgradient$$

Proof of \implies :

- $G(t) := \sup_{t'} S(t')(t)$ convex as pointwise supremum!
- Define $dG_t(\cdot) = S_l(t)(\cdot)$ linear part of S(t)

 S(t)(\cdot) subgradient to G at t: by truthfulness

Background	Main Result ooo●oo	Mechanism Design	Properties
Proof: Cor	Nex $ au$		

Proof of
$$\Leftarrow$$
:

$$S(t')(t) = G(t') + dG_{t'}(t - t')$$

$$\leq G(t) = S(t, t) \quad by \ def. \ subgradient$$

Proof of \implies :

- $G(t) := \sup_{t'} S(t')(t)$ convex as pointwise supremum!
- Define $dG_t(\cdot) = S_\ell(t)(\cdot)$ linear part of S(t)
- $S(t)(\cdot)$ subgradient to G at t: by truthfulness

Background 000000	Main Result	Mechanism Design	Properties
Proof: Non-Cor	nvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

Gonsider $\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$

• Write $\hat{t} = \sum_{l} \alpha_{l} t_{l}$ for $t_{l} \in \mathcal{T}$

Define $S(t)(\hat{t}) = \sum_{l} \alpha_{l} S(t)(t_{l})$

Define $G(\hat{t}) = \sup_{t \in T} S(t)(\hat{t})$

Background	Main Result oooooo	Mechanism Design	Properties
Proof: Non-Cor	nvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

Consider $\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$ Write $\hat{t} = \sum_i \alpha_i t_i$ for $t_i \in \mathcal{T}$ Define $S(t)(\hat{t}) = \sum_i \alpha_i S(t)(t_i)$ Define $G(\hat{t}) = \sup_{t \in \mathcal{T}} S(t)(\hat{t})$

Background	Main Result ooooo●o	Mechanism Design	Properties
Proof: Non-Cor	וvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

Consider $\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$

• Write $\hat{t} = \sum_i \alpha_i t_i$ for $t_i \in \mathcal{T}$

Define $S(t)(\hat{t}) = \sum_i \alpha_i S(t)(t_i)$

• Define $G(\hat{t}) = \sup_{t \in \mathcal{T}} S(t)(\hat{t})$

Background	Main Result ○○○○●○	Mechanism Design	Properties
Proof: Non-Cor	nvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

• Consider $\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$

• Write
$$\hat{t} = \sum_i \alpha_i t_i$$
 for $t_i \in \mathcal{T}$

• Define
$$S(t)(\hat{t}) = \sum_i \alpha_i S(t)(t_i)$$

```
• Define G(\hat{t}) = \sup_{t \in \mathcal{T}} S(t)(\hat{t})
```

Background	Main Result ooooeo	Mechanism Design	Properties
Proof: Non-Cor	nvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

Consider
$$\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$$

• Write
$$\hat{t} = \sum_i \alpha_i t_i$$
 for $t_i \in \mathcal{T}$

Define
$$S(t)(\hat{t}) = \sum_i \alpha_i S(t)(t_i)$$

• Define
$$G(\hat{t}) = \sup_{t \in \mathcal{T}} S(t)(\hat{t})$$

Background	Main Result ooooeo	Mechanism Design	Properties
Proof: Non-Cor	nvex ${\cal T}$		

Proof of \Leftarrow : same.

Proof of \implies :

• Consider $\hat{t} \in Conv(\mathcal{T}) \setminus \mathcal{T}$

• Write
$$\hat{t} = \sum_i \alpha_i t_i$$
 for $t_i \in \mathcal{T}$

• Define
$$S(t)(\hat{t}) = \sum_i \alpha_i S(t)(t_i)$$

• Define
$$G(\hat{t}) = \sup_{t \in \mathcal{T}} S(t)(\hat{t})$$

Background	Main Result oooooo●	Mechanism Design ০০০০	Properties
Immediate New	/ Results		

1 Proper scoring rules for non-convex sets of distributions

Fewer constraints \implies *more scoring rules?*

2 "Local" mechanisms and scoring rules Convexity is a local property

Background 000000	Main Result oooooo●	Mechanism Design	Properties
Immediate New	/ Results		

1 Proper scoring rules for non-convex sets of distributions

Fewer constraints \implies *more scoring rules?*

2 "Local" mechanisms and scoring rules Convexity is a local property

Background	Main Result	Mechanism Design ●০০০	Properties
Mechanism De	sign: Implemen	tability of a	

Definition

 $\{ dG_t \}_{t \in \mathcal{T}} \text{ satisfies } cyclic \text{ monotonicity (CMON) if for all finite sets} \\ \{ t_0, \dots, t_k \} \subseteq \mathcal{T}, \\ \sum_{i=0}^k dG_{t_i}(t_{i+1} - t_i) \leq 0.$

CMON with k = 2 is Weak monotonicity (WMON).

Let
$$L_{xy} = \int_0^1 dG_{\beta y+(1-\beta)x} (y-x) d\beta.$$

Definition

 $\{dG_t\}_{t\in\mathcal{T}}$ satisfies path independence (PI) if for all $x, y, z \in \mathcal{T}$

$$L_{xy} + L_{yz} = L_{xz}$$

Background 000000	Main Result	Mechanism Design ooo●	Properties
Reproving Müll	er et al.		

New proof via construction of G:

■ Fix *G*(*t*₀)

- Extend $G(t) = L_{t_0 t}$ integrable by WMON, consistent by PI
- Subgradient by simple computation

Background 000000	Main Result	Mechanism Design ooo●	Properties
Reproving Müll	er et al.		

New proof via construction of G:

■ Fix *G*(*t*₀)

Extend $G(t) = L_{t_0 t}$ integrable by WMON, consistent by PI

Subgradient by simple computation

Background oooooo	Main Result	Mechanism Design 000●	Properties
Reproving Müll	er et al.		

New proof via construction of G:

■ Fix *G*(*t*₀)

- Extend $G(t) = L_{t_0 t}$ integrable by WMON, consistent by PI
- Subgradient by simple computation

Q: What if types are exponential (or infinite!) in size?

A: Use summary information / low-dim representation

Examples:

- Scoring rules for statistics [Lamber]
 - Rankings instead of utilities [

[Lambert-Pennock-Shoham, Gneitir [Carroll]

Q: What if types are exponential (or infinite!) in size?

A: Use summary information / low-dim representation

Examples:

- Scoring rules for statistics [Lambert-Pennock-Shoham, Gneiting]
- Rankings instead of utilities [C]

[Lambert-Pennock-Shoham, Gnei [Carroll]

- Q: What if types are exponential (or infinite!) in size?
- A: Use summary information / low-dim representation

Examples:

- Scoring rules for statistics [Lambert-Pennock-Shoham, Gneiting]
- Rankings instead of utilities [Carroll]

· ...

Background	Main Result	Mechanism Design	Properties 00000
More Formall	V		

Wish to change report space from T to some other R

$$S: R \to Aff(\mathcal{T} \to \mathbb{R}); \qquad S(r)(t)$$

What does truthful mean now?

Background	

Definition

Properties

A *property* is a map $\Gamma : \mathcal{T} \to R$ specifying the correct report $r = \Gamma(t)$ for each type *t*.

Truthfulness condition

$S(r')(t) \leq S(\Gamma(t))(t)$

We say *S elicits* Г.

Background	

Definition

Properties

A *property* is a map $\Gamma : \mathcal{T} \to R$ specifying the correct report $r = \Gamma(t)$ for each type *t*.

Truthfulness condition

 $S(r')(t) \leq S(\Gamma(t))(t)$

We say S *elicits* Γ .

Background

Main Result

Mechanism Design

Properties

A New Result

Theorem

Property Γ is elicitable iff there exists $G : \mathcal{T} \to \mathbb{R}$ differentiable and convex, and map $\varphi : R \to \nabla G(\mathcal{T})$, such that $\varphi(\Gamma(t)) = \nabla G(t)$.

New insights:

- Elicitable properties == subgradients!
- Properties specify where *G* should be *flat*

A New Result

Theorem

Property Γ is elicitable iff there exists $G : \mathcal{T} \to \mathbb{R}$ differentiable and convex, and map $\varphi : R \to \nabla G(\mathcal{T})$, such that $\varphi(\Gamma(t)) = \nabla G(t)$.

New insights:

- Elicitable properties == subgradients!
- Properties specify where *G* should be *flat*

Background

Main Result

Mechanism Design

Properties

Finite R: Power Diagram

Cells = types with same report. Application: rankings!

Background

Main Result 000000 Mechanism Design

Properties

Thanks!