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Warm-up: Convex Functions

Definition
G:T7 — Risconvexifforallx,y € T andalla € [0, 1]

aG(x)+ (1 - a)G(y) = G(ax + (1 —a)y)
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Warm-up: Convex Functions

Definition
A linear function dG¢ : T — R is a subgradientto G at t if

Vt'eT G(t')>G(t)+dG:(t' —t)
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Pointwise Supremum

Fact
If G; are convex functions for i € I, then G is convex:

G(t) :=supG(t)

iel
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Mechanism Design

Single-player mechanism:
B Outcome space O possible allocations
B Type space 7 = (O — R) valuation functions
W Allocationrulea: 7 — O reports to outcomes
B Paymentrule p: 7 — R reports to payments

Bidder with type t who reports t’ € T has net utility
u(t’, t) =t(a(t’)) - p(t")
Truthfulness condition

Vt, t' e T U(t, t) < U(t, t)



Background
[e]e]e] lele}

Myerson 1981

For single-parameter mechanisms:

Theorem
a is implementable <= a is monotone

Implementable means payments p making (a, p) truthful



Background
[e]e]e] lele}

Myerson 1981

For single-parameter mechanisms:

Theorem
a is implementable <= a is monotone

Implementable means payments p making (a, p) truthful

Equivalently:

Theorem

a is implementable <= 3G : T — R convex s.t. a is a
subgradient to G

G is the consumer surplus



Background
0000e0

Scoring Rules

B Outcome space O  mutually exclusive events
m Private belief p € Ap  probabilities over outcomes
B Scoringrule S : Ap Xx O = R score of report given an outcome



Background
0000e0

Scoring Rules

B Outcome space O  mutually exclusive events
m Private belief p € Ap  probabilities over outcomes
B Scoringrule S : Ap Xx O = R score of report given an outcome

Expected score of report p’ given truth p is

S(p’.p) := o [S(p’, 0)]



Background
0000e0

Scoring Rules

B Outcome space O  mutually exclusive events
m Private belief p € Ap  probabilities over outcomes
B Scoringrule S : Ap Xx O = R score of report given an outcome

Expected score of report p’ given truth p is
S(p’, p) = o, [S(p’, 0)]
Truthfulness condition

Vp,p’ S(p’, p) < S(p, p)
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Gneiting and Raftery 2007

Theorem

Scoring rule S is truthful <=> there is some convex G : Ap — R
with subgradients {dGp} such that

5(p,0) =G(p) +dGp (1o —p)
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What'’s the Connection?

Mechanism:
m Outcomes O
m Type 7T =(0—=R)
m Utility U(t’, )

Truthfulness
ut’,t) < U(t, t)

u(t’, t) = t(a(t)) - p(t")

Scoring rule:
m Outcomes O
m Belief p € Ap

m Score S(p’, p)

Truthfulness
S(p’, p) <S(p, P)

S(p’, p) := oE, [S(p’,0)]
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What'’s the Connection?

Mechanism: Scoring rule:
m QOutcomes O m Outcomes O
B Type 7T =(0—-R) m Belief p € Ap
m Utility U(t’, t) m Score S(p’, p)
Truthfulness Truthfulness
u(t’, t) < U(t, t) 5(p’,p) < S(p, p)
u(t, t) = t(a(t’)) - p(t’) (", p):= E [S(p’,0)]
= (t, 1awy ) — p(t) =(p, S(p".*))

Reward affine in private info!
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Our Model: Affine Score

B Type space T  any subset of a vector space
B Reward space A C Aff(T — R)  affine functions on types
m AffinescoreS: 7 — A

Truthfulness condition
S(t)(t) < S(t)(t)

Observation: G(t) := sup S(t")(t) convex
t/

and S truthful = G(t) = S(t)(t)
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A General Truthfulness Characterization

Theorem

Affine score S : T — A is truthful if and only if there exists some
convex G : Conv(T) — R, and subgradients {dG¢}, such that

St =G(t)+dGy (t-t).

B Techniques from Gneiting-Raftery and Archer-Kleinberg

B Immediately gives previous scoring rule and mechanism
characterizations
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Proof: Convex T

Proof of <"
mS(tH)=G(t)+dGy (t—-t))
< G(t)=S5(t, t) bydef subgradient

Proof of = :
B G(t) :=supyg S(t')(t) convex as pointwise supremum!
B Define dG¢(:) = S,(t)(+) linear part of S(t)
B S(t)(-) subgradientto G att: by truthfulness

G(t") +dGe(t—t') = S(t')(t) < G(t)



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.

Proof of = :
m Consider t € Conv(T)\T



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.

Proof of = :
m Consider t € Conv(T)\T
m Write =Y aitifort;eT



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.
Proof of =
m Consider t € Conv(T)\T
m Write =Y aitifort;eT
m Define S(t)(£) = a:S(t)(t:)



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.

Proof of = :
m Consider t € Conv(T)\T
m Write =Y aitifort;eT
m Define S(t)(£) =Y, 0:S(t)(t:)
m Define G(t) = super S()()



Main Result
0000e0

Proof: Non-Convex 7

Proof of <= : same.

Proof of = :
m Consider t € Conv(T)\T
m Write =Y aitifort;eT
m Define S(t)(£) =Y, 0:S(t)(t:)
m Define G(t) = super S()()

Proceed as before...



Main Result

O0000e

Immediate New Results

Kl Proper scoring rules for non-convex sets of distributions
Fewer constraints => more scoring rules?




Main Result
[e]e]e]e]e] )

Immediate New Results

Kl Proper scoring rules for non-convex sets of distributions
Fewer constraints => more scoring rules?

H “Local’ mechanisms and scoring rules
Convexity is a local property
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Mechanism Design: Implementability of a

Definition

{dG¢}te7 satisfies cyclic monotonicity (CMON) if for all finite sets
{to,..., t«} ST, K

D dGy(tiyr — ) <O.
=0

CMON with k = 2 is Weak monotonicity (WMON).

1
Let Lxy = J dGgy+(1-px (y —x) dB.
0

Definition
{dG¢+}te7 satisfies path independence (Pl)if forall x,y,ze T

ny AP Lyz = LXZ
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Previous Characterizations

’ Implementable

Rochet 1987 Myerson 1981
CMON Subgradient
Mdiller et al. 2007 Archer, Kleinberg 2008

WMON + PI LWMON + VF
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A New Proof Structure

’ Implementable ‘

Thm 1
Thm 3 Thm 2
WMON + Pl ) <—— | Subgradient | «<——— | CMON
Cor 6 Thm 4

(LWMON + VF) (WL Subgradient)
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Reproving Muller et al.

Thm 3

WMON + P|) == | Subgradient

New proof via construction of G:
m Fix G(tp)
m Extend G(t) =L¢,t integrable by WMON, consistent by Pl

B Subgradient by simple computation
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Q: What if types are exponential (or infinite!) in size?

A: Use summary information / low-dim representation

Examples:
B Scoring rules for statistics  [Lambert-Pennock-Shoham, Gneiting]
B Rankings instead of utilities  [Carroll]
m ..
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More Formally...

Wish to change report space from 7 to some other R

S:R - Aff(T - R); S(r)(t)

What does truthful mean now?



Properties
[e]e] lele]e]

Properties

Definition
A propertyis a map I' : T — R specifying the correct report
r = I'(t) for each type t.



Properties
[e]e] lele]e]

Properties

Definition
A propertyis a map I' : T — R specifying the correct report
r = I'(t) for each type t.

Truthfulness condition

S(r)(t) = S(r(H)(t)

We say S elicits I".



Properties
[e]e]e] lee]

A New Result

Theorem

Property I" is elicitable iff there exists G : T — R differentiable and
convex, and map ¢ : R — VG(T), such that p(I'(t)) = VG(t).
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A New Result

Theorem

Property I" is elicitable iff there exists G : T — R differentiable and
convex, and map ¢ : R — VG(T), such that p(I'(t)) = VG(t).

New insights:
B Elicitable properties == subgradients!
B Properties specify where G should be flat
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Finite R: Power Diagram

Cells = types with same report. Application: rankings!



Thanks!
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