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Warm-up: Convex Functions


y

Definition

G : T → R is convex if for all , y ∈ T and all α ∈ [0,1]

αG() + (1− α)G(y) ≥ G(α+ (1− α)y)
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Warm-up: Convex Functions


y

Definition

A linear function dGt : T → R is a subgradient to G at t if

∀t′ ∈ T G(t′) ≥ G(t) + dGt (t′ − t)
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Pointwise Supremum

Fact

If G are convex functions for  ∈ , then G is convex:

G(t) := sp
∈

G(t)
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Mechanism Design

Single-player mechanism:
Outcome space O possible allocations

Type space T = (O→ R) valuation functions

Allocation rule  : T → O reports to outcomes

Payment rule p : T → R reports to payments

Bidder with type t who reports t′ ∈ T has net utility

U(t′, t) = t((t′))− p(t′)

Truthfulness condition

∀t, t′ ∈ T U(t′, t) ≤ U(t, t)
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Myerson 1981

For single-parameter mechanisms:

Theorem

 is implementable ⇐⇒  is monotone

Implementable means payments p making (, p) truthful

Equivalently:

Theorem

 is implementable ⇐⇒ ∃G : T → R convex s.t.  is a
subgradient to G

G is the consumer surplus
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Scoring Rules

Outcome space O mutually exclusive events

Private belief p ∈ ΔO probabilities over outcomes

Scoring rule S : ΔO ×O→ R score of report given an outcome

Expected score of report p′ given truth p is

S(p′, p) := E
o∼p

�

S(p′, o)
�

Truthfulness condition

∀p, p′ S(p′, p) ≤ S(p, p)
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Gneiting and Raftery 2007

Theorem

Scoring rule S is truthful ⇐⇒ there is some convex G : ΔO → R

with subgradients {dGp} such that

S(p, o) = G(p) + dGp (1o − p)
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What’s the Connection?

Mechanism:
Outcomes O
Type T = (O→ R)

Utility U(t′, t)

Scoring rule:
Outcomes O
Belief p ∈ ΔO

Score S(p′, p)

Truthfulness

U(t′, t) ≤ U(t, t)
Truthfulness

S(p′, p) ≤ S(p, p)

U(t′, t) = t((t′))− p(t′)

=



t, 1(t′)
�

− p(t′)

S(p′, p) := E
o∼p

�

S(p′, o)
�

=



p, S(p′, ·)
�

Reward affine in private info!
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Our Model: Affine Score

Type space T any subset of a vector space

Reward space A ⊆ Aff(T → R) affine functions on types

Affine score S : T → A

Truthfulness condition

S(t′)(t) ≤ S(t)(t)

Observation: G(t) := sp
t′

S(t′)(t) convex

and S truthful =⇒ G(t) = S(t)(t)
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A General Truthfulness Characterization

Theorem

Affine score S : T → A is truthful if and only if there exists some
convex G : Con(T )→ R, and subgradients {dGt}, such that

S(t′)(t) = G(t′) + dGt′ (t − t′).

Techniques from Gneiting-Raftery and Archer-Kleinberg
Immediately gives previous scoring rule and mechanism
characterizations



Background Main Result Mechanism Design Properties

Proof: Convex T

Proof of⇐= :
S(t′)(t) = G(t′) + dGt′ (t − t′)

≤ G(t) = S(t, t) by def. subgradient

Proof of =⇒ :
G(t) := spt′ S(t′)(t) convex as pointwise supremum!

Define dGt(·) = Sℓ(t)(·) linear part of S(t)

S(t)(·) subgradient to G at t: by truthfulness

G(t′) + dGt′(t − t′) = S(t′)(t) ≤ G(t)
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Proof: Non-Convex T

Proof of⇐= : same.

Proof of =⇒ :

Consider t̂ ∈ Con(T ) \ T

Write t̂ =
∑

 α t for t ∈ T

Define S(t)( t̂ ) =
∑

 α S(t)( t )

Define G( t̂ ) = spt∈T S(t)( t̂ )

Proceed as before...
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Immediate New Results

1 Proper scoring rules for non-convex sets of distributions
Fewer constraints =⇒ more scoring rules?

2 “Local” mechanisms and scoring rules
Convexity is a local property
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Mechanism Design: Implementability of 

Definition

{dGt}t∈T satisfies cyclic monotonicity (CMON) if for all finite sets
{t0, . . . , tk} ⊆ T , k

∑

=0

dGt(t+1 − t) ≤ 0.

CMON with k = 2 is Weak monotonicity (WMON).

Let Ly =
∫ 1

0
dGβy+(1−β) (y− )dβ.

Definition

{dGt}t∈T satisfies path independence (PI) if for all , y, z ∈ T

Ly + Lyz = Lz
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Previous Characterizations

Implementable

CMON

Rochet 1987

Subgradient

Myerson 1981

WMON + PI

Müller et al. 2007

LWMON + VF

Archer, Kleinberg 2008
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A New Proof Structure

Implementable

Subgradient

Thm 1

WMON + PI
Thm 3

LWMON + VF

Cor 6

WL Subgradient

Thm 4

CMON
Thm 2
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Reproving Müller et al.

SubgradientWMON + PI
Thm 3

New proof via construction of G:

Fix G(t0)

Extend G(t) = Lt0 t integrable by WMON, consistent by PI

Subgradient by simple computation
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TMI

Q: What if types are exponential (or infinite!) in size?

A: Use summary information / low-dim representation

Examples:
Scoring rules for statistics [Lambert-Pennock-Shoham, Gneiting]

Rankings instead of utilities [Carroll]

...
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More Formally...

Wish to change report space from T to some other R

S : R→ Aff(T → R); S(r)(t)

What does truthful mean now?
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Properties

Definition

A property is a map  : T → R specifying the correct report
r = (t) for each type t.

Truthfulness condition

S(r′)(t) ≤ S((t))(t)

We say S elicits .
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A New Result

Theorem

Property  is elicitable iff there exists G : T → R differentiable and
convex, and map φ : R→ ∇G(T ), such that φ((t)) = ∇G(t).

New insights:
Elicitable properties == subgradients!
Properties specify where G should be flat
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Finite R: Power Diagram

Cells = types with same report. Application: rankings!
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Thanks!
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