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Abstract

In this paper, we classify and describe a method for constructing fractal trees in three dimensions. We explore certain
aspects of these trees, such as space-filling and self-contact.
� 2006 Published by Elsevier Ltd.
1. Introduction

A fractal tree can be loosely defined as a trunk and a number of branches that each look like the tree itself, thus
creating a self-similar object. Often, these appear strikingly similar to real trees, and hence are used frequently as tree
models. Fractal tree models have also been used in other areas, such as antenna construction [1] and mantle melting [2].
Many other applications of the structure of fractal trees are found in [5–9].

Mathematically, these trees have been studied primarily by Mandelbrot and Frame [3,4], who proved and conjec-
tured properties of symmetric binary fractal trees in the plane. Mandelbrot and Frame looked into plane-filling trees,
the shape of the canopy (or tip set), and conditions for self-contacting trees.

Less work has been done concerning fractal trees in three dimensions. Recent work in three dimensions has been
initiated by Tancheva, Baker, and Maceli as part of the Research Experience for Undergraduates program at Ithaca
College. These students developed a method for constructing and visualizing 3-branch trees. They also made conjec-
tures about the shape of the canopy when a tree has tip-to-tip self-contact.

We continue to generalize the work of Mandelbrot and Frame to three dimensions. We show that the canopy of a
tree with tip-to-tip self-contact forms a continuous surface, and give conditions for generating these trees. In addition,
we discuss skew trees, a new class of fractal trees, and construct space-filling trees that fill boxes in arbitrarily many
dimensions.

Finally, we mention that the search for scaling that results in tip-to-tip contact involves rather interesting constants,
depending, of course, on the branching angles. In 2-dimensional trees with two branchings at angle of p/3, we see that
the required scaling ratio turns out to be 1//, where / ¼ 1þ

ffiffi
5
p

2
is the Golden Ratio [3]. We see this same scaling ratio
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required in 3-dimensional trees when the branching angle is arccosð�1=
ffiffiffi
3
p
Þ; see Section 5. The appearance of the

Golden Mean in the study of fractals and Hausdorff dimension can be found in several references [10–12].
2. Fractal trees

First, let us define a fractal tree more rigorously. We can do this with three parameters:

Definition 2.1 (Fractal tree). We denote a 3-dimensional fractal tree by T ¼ ðr;u; bÞ, where r is the scaling ratio at each
level, u is the angle of rotation in the y � z plane, and b is the number of branches.

With these parameters, we can construct the tree using affine transformations (functions of the form f ð~xÞ ¼ A~xþ~bÞ.

Definition 2.2 (Tree transformations). For a fractal tree T ¼ ðr;u; bÞ, the corresponding affine transformations are
T jð~xÞ ¼~t þ r

cosðhjÞ � sinðhjÞ 0

sinðhjÞ cosðhjÞ 0

0 0 1

2
64

3
75

1 0 0

0 cosðuÞ � sinðuÞ
0 sinðuÞ cosðuÞ

2
64

3
75~x;
where hj = 2p(j � 1)/b and 1 6 j 6 b. The trunk~t of the tree is assumed throughout to be the standard vector
~e3 ¼
0

0

1

2
64
3
75:
These transformations map the tip of a branch to the tips of its child branches: they scale the branch tip by r, rotate
it about the x-axis by an angle u, rotate it about the z-axis by an angle hj, and finally translate it 1 unit in the z direction
(see Fig. 1).

Skew trees, another class of fractal trees, are constructed in the same manner as the regular fractal tree, but with an
additional rotation about the trunk at every level of the tree.

Definition 2.3 (Skew tree). We will denote by Tskew ¼ ðr;u; bÞS a skew tree, which has the same transformations as in
Definition 2.2 except with hj ¼ 2pðj� 1

2Þ=b instead of 2p(j � 1)/b.

With the transformations defined above, we define a path in the tree which we use to refer to specific parts of the tree.
Paths are given by sequences of transformations.

Definition 2.4 (Path). Given a fractal tree T ¼ ðr;u; bÞ, a path p in T is a string of integers s1s2� � �sk, where 1 6 si 6 b.
The size of the path p, denoted |p|, is the number of integers, k. The tip of p, tip(p), is defined as
T s1
� T s2

� � � � � T sk ð~e3Þ:
It should be noted that paths in a tree are constructed somewhat counter-intuitively, since the first integer in the path
corresponds to the outermost transformation, and the last integer to the innermost transformation. Fig. 1 shows the
construction of the ð2

3
; p

4
; 3Þ tree. Observe how each step contains three exact copies of the previous step coming out

of the new trunk. This is the reason for the ‘‘inverted’’ paths; the transformations push points from the trunk toward
the tips, so the tip of each path must correspond be the first transformation.
Fig. 1. The construction of the T ¼ ð2
3
; p

4
; 3Þ fractal tree, and a path p in T.



Fig. 2. The tip set of the ð1
2
; p

6
; 3Þ tree, which resembles the Sierpinski triangle.
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The main object of study of this paper is the tip set of a fractal tree, which is defined below, and illustrated in Fig. 2.
H denotes the space of compact subsets of R3 with the Hausdorff metric.

Definition 2.5 (Tip set). Let T ¼ ðr;u; bÞ be a fractal tree. The tip set or canopy of T, denoted tip ðTÞ, is the attractor
of the iterated function system {T1, . . . ,Tb}. Thus, tip ðTÞ is the fixed point of the function F : H!H, where
F(S) = T1(S) [ � � � [ Tb(S):
F ðtipðTÞÞ ¼
[b
i¼1

T iðtipðTÞÞ ¼ tipðTÞ:
Our primary concerns regarding the tip set are the conditions under which a tree touches itself at the tips. This is the
notion of (tip-to-tip) self-contact.

Definition 2.6 (Self-contact). If two branches of a tree T intersect, T is said to have self-contact. If branches of T

intersect only at the tips (tip(p)=tip(q) for distinct paths p; q 2T), T is said to have tip-to-tip self-contact.

Note that by symmetry and self-similarity, if two branches intersect, then the tree self-contacts infinitely many times.
Similarly, if a tree has tip-to-tip self-contact, the tip set will be connected and form a continuous curve, as we show in
the next section.

3. Connectedness of a self-contacting canopy

Here we show that the canopy of a tree with tip-to-tip self-contact is connected, and therefore forms a continuous
curve.

Definition 3.1 (�-Connected). A set S is �-connected if for any two points x,y 2 S there is a finite sequence of points
s1, s2, � � � , sn 2 S such that s1 = x, sn = y, and ksi � si+1k < � for all 1 6 i < n. Such a finite sequence is called an �-chain

from x to y.

Lemma 3.2 (�-Connectedness of contractions). Let f:X! Y be a contractive mapping with Lipschitz constant r < 1. Then

if S � X is �-connected, f(S) is r�-connected.

Proof. Let x,y be any two points in S. By Definition 3.1, we can find an �-chain s1, . . . , sn from x to y such that
ksi � si+1k < � for all 1 6 i < n. Since f is a contraction, we then have that kf(si) � f(si+1)k 6 rksi � si+1k < r�, so
f(s1), . . . , f(sn) is an r�-chain from f(x) to f(y). Since we can pick x,y such that f(x),f(y) 2 f(S) are arbitrary, f(S) must
be r�-connected. h

Theorem 3.3 (Connectedness of the attractor of an IFS). Let A be the attractor of the iterated function system

{T1, . . . ,Tn}, where each Ti is a contractive homeomorphism with Lipschitz constant r < 1. Let G be the graph with vertices

V = {Ti} and edges E = {(Ti,Tj) |Ti(A) \ Tj(A) 5 ;}. Then A is connected if and only if G is connected.

Proof. Assume A is connected. Then as each Ti is continuous, Ti(A) is also connected. If we also assume that G is not
connected, then there exists a nonempty set S ( V such that there are no edges (s,v) 2 E with s 2 S and v 2 V � S. Thus,
Ti(A) \ Tj(A) = ; for all Ti 2 S and Tj 2 V � S. We now define sets C and D as follows:
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C ¼
[
T i2S

T iðAÞ; D ¼
[

T j2V�S

T jðAÞ:
Note that C and D are disjoint, but C [ D = T1(A) [ � � � [ Tn(A) = A. Since each Ti is a homeomorphism and A is
closed, we have that each Ti(A) is closed, and thus C and D are closed as finite unions of closed sets. Thus A must
be disconnected, which is a contradiction.

Assume that A is disconnected but G is connected. We can then find disjoint closed sets C,D such that C [ D = A. As
C and D are disjoint there must be some nonzero distance between them, d. If we let d be the diameter of A, we trivially
have that A is d-connected. By Lemma 3.2, since each Ti has a Lipschitz constant r < 1, we have that Ti(A) is rd-
connected. We now show that F(A) is rd-connected, where F(A) = T1(A) [ � � � [ Tn(A).

Let x 2 Ti(A) and y 2 Tj(A) be any two points in F(A), and let T a1 ; . . . ; T ak be a path in G from T a1 ¼ T i to T ak ¼ T j.
Since T ai \ T aiþ1

is nonempty for all i < k (by definition of G), we can define points s1, . . . , sk�1, where each
si 2 T ai \ T aiþ1

. We can now build a giant rd-chain from x to y, since there is an rd-chain between x and s1, between each
si and si+1, and between sk�1 and y. Therefore, F(A) = A is rd-connected.

We can continue this process indefinitely, so that Fm(A) = A is rmd-connected. Since r < 1 there must be some m for
which rmd < d, but this is a contradiction since C and D are separated by d. h

Theorem 3.4 (Attractors and curves). Let A be the attractor of an IFS {T1, . . . ,Tn} such that each Ti is a contractive

homeomorphism with Lipschitz constant r < 1. Then A is path-connected and a continuous image of [0,1].

Proof. By Theorem 3.3, A is connected. We now show that A is locally connected.
Let x 2 A be arbitrary. Since A = ¨Ti(A), there must be some i for which x 2 Ti(A). We can also find j for which

x 2 Ti � Tj(A), since Ti(A) = ¨Ti�Tj(A). Continuing this process, we obtain an infinite sequence {si} such that x 2 F(k)
for all k, where F ðkÞ ¼ T s1 � T s2 � � � � T snðAÞ. Now, since A 2H is compact, and thus closed and bounded as a subset of
Rn, there must be some finite diameter d of A. Since each Ti have a Lipschitz constant r < 1, we now have that F(k) has
diameter rkd for all k, and is connected since A is connected. Thus, x is in an arbitrarily small connected subset of A, and
since x was arbitrary, A is locally connected.

We now have by the Hahn–Mazurkiewicz theorem that A is a continuous image of the interval [0,1] and thus is a
curve. h

The corollary below follows immediately from Theorem 3.4, since the canopy of a fractal tree is the attractor of the
tree’s transformations.

Corollary 3.5 (Canopies and curves). If a fractal tree T has tip-to-tip self-contact, its canopy tip (T) will be connected,

locally connected, and a curve.
4. Approximating conditions for self-contact

Given branching angle u, we outline the method used to compute the value of r required for tip-to-tip self-contact in
a symmetric fractal tree. In other words, our method determines the greatest scaling ratio possible without a given tree
intersecting itself.

Note that by self-similarity, it is enough to determine the conditions for contact between the first and second original
branches (the branches generated by T1 and T2, respectively). By symmetry, the two branches will intersect if and only if
the tree created from the first branch crosses the plane bisecting these two branches (see Fig. 3).

To find the correct ratio for a given angle u, we first determine the path along the branches that moves toward this
plane the fastest (as explained below). Although this path must follow an infinite number of branches, it is easy to com-
pute up to a specified length. Our program, written in Matlab, takes u, the number of branches, and the path size, then
searches for the sequence of branch transformations (starting at branch 1) that moves the greatest distance in the direc-
tion of the bisecting plane.

After determining this path up to a certain length, we can search for the scaling ratio that brings the tip of the path
closest to the plane. If our path length is reasonably long, this should provide a very precise approximation for the ratio
required for tip-to-tip self-contact in the infinite case.

This method is useful in comparing the ratios required for tip-to-tip self-contact among trees with different numbers
of branches and different u values. Generally, we have found that as the number of branches in the tree increases, the
ratio decreases. As a function of u, the ratio typically follows a continuous curve. This curve changes dramatically at
certain values of u, however, which we will discuss in the next section.



Fig. 3. A top down view of a 3-branch tree. The dotted line represents the plane bisecting branches 1 and 2.

Fig. 4. A 3-branch tree with u = p/4 and r = .5507, conditions that should approximate tip-to-tip self-contact. The first 20
transformations of the path starting at the first branch are drawn in blue, and its symmetric complement is drawn in red. As illustrated,
they come very close to connecting at the tips. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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This method can also be used to find and compare self-contact ratios among skew trees. Typically, these ratios will
vary significantly from that of their non-skew counterparts (see Figs. 4 and 5).
5. Mathematical results involving conditions for self-contact

When looking at the paths giving us tip-to-tip self-contact, three things become apparent. First, the same path often
works for a wide range of u values. Second, the paths typically change at critical points in the r–u plot. And third, paths
typically end with an infinite sequence of the same transformation. These three characteristics are helpful in uncovering
mathematical expressions for the conditions of self-contact.

In the four branch case, the path 121�3 seems to work for u � 1.27 rad to u � 2.00. During this interval, the r–u plot
forms a smooth curve. Then, when u � 2.00, the path changes to 124�3 and the r–u plot abruptly changes direction. We
can find exactly where this change occurs, then, by solving for when the path 124 brings us closer to the plane bisecting
the first two branches than 121. This happens to occur precisely at u ¼ arccosð1�

ffiffiffi
2
p
Þ. This method can be used to find

exactly where the r–u plot changes in many cases (see Fig. 6 and Fig. 7).
In the four branch case, u ¼ arccosð1�

ffiffiffi
2
p
Þ happens to give the maximum ratio for tip-to-tip self-contact. Trees

with a different number of branches also typically have their maximum ratio at a point where the path changes signif-
icantly, allowing us to solve for u at this point.



Fig. 5. An r–u plot for 2, 3, 4 and 5 branch trees. The two branch plot at the top is identical to that found by Mandelbrot and Frame in
the planar case [3].

Fig. 6. An r–u plot for skew 2, 3, 4 and 5 branch trees.
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In Table 1, we give precise mathematical expressions for the maximum scaling ratios in the 2, 4 and 6 branch cases.
Here, we have been able to find closed formulas for the point at the tip of the infinite path (that is, the path of infinite
size). When the dot product of this point and the normal to the plane bisecting branches 1 and 2 is equal to zero, this
point will lie on the plane. Hence, we can solve for the correct scaling ratio. Using this method, we have found r–u
equations yielding tip-to-tip self-contact for 4 branch, 6 branch, skew 3 and skew 5 branch trees. Our equations, along
with the paths giving us self-contact, are included in Table 2 for the skew 3-branch trees; for shorthand we define



Fig. 7. Path changes in the 4-branch tree. Note that u ¼ arccosð1�
ffiffiffi
2
p
Þ gives the maximum value of r.

Table 1
Maximum branching ratios

Branches Expression for u Expression for r Approximation of r

2 arccosð�1ffiffi
2
p Þ, p

2
1ffiffi
2
p 0.707

3 arccosð�1ffiffi
3
p Þ 0.619

4 arccosð1�
ffiffiffi
2
p
Þ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�3þ4

ffiffi
2
pp

4�2
ffiffi
2
p 0.538

5 arccos 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

5
p

q� �
0.490

6 arccosð3�
ffiffiffiffi
33
p

6 Þ
3þ
ffiffiffiffi
33
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114�2

ffiffiffiffi
33
pp

�9þ
ffiffiffiffi
33
p 0.424

Table 2
Paths and equations that determine self-contact in 3 branch skew trees

u Interval Path Equation determining self-contact

½arccosð2
ffiffi
3
p
�1

3 Þ; arccosð2
ffiffi
2
p
�1

3 Þ� 12313�2 �8 + r2(16 + (4 � 5r)r) + 12r3(1 + r) cosu + 9r4 cos(2u) = 0

½arccosð2
ffiffi
2
p
�1

3 Þ; arccosð13Þ� 1231�2 �2 + r2(4 + r) + 3r3 cosu = 0
½arccosð13Þ; a� 1113�2 �32 + 16r + 20r2 + 14r3 + (�48r + 48r2 + 27r3)cosu

+ (�12r + 6r2)cos(2u) � 9r2 cos(3u) = 0

½a; arccosð�1
3Þ� 111�2 r ¼ �2þ6 cos uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62þ72 cos u�54 cosð2uÞ
p

5þ12 cos u�9 cosð2uÞ
½arccosð�1

3Þ; arccosð�
ffiffi
5
p

3 Þ� 113�2 r ¼ 2
1�3 cos u
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a ¼ 1

9
1� 2

ffiffiffi
7
p

cos
arctan 3

ffiffiffi
3
p� �

3

 !
þ

ffiffiffi
3
p

sin
arctan 3

ffiffiffi
3
p� �

3

 ! ! !
:

6. Space-filling trees

To find a fractal tree that fills space, we must first define exactly what we are looking for. Below are definitions of
dimension and of space-filling.

Definition 6.1 (Hausdorff dimension). The Hausdorff dimension d of a fractal tree T ¼ ðr;u; bÞ or T ¼ ðr;u; bÞS is given
by the formula



Fig. 8.
though
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d ¼ ln b
ln 1

r

:

Definition 6.2 (Space-filling). A fractal tree T fills n-dimensional space if
Yn

i¼1

½ai; bi� � tipðTÞ
for ai < bi, and
Q

denotes the cartesian product.

These definitions are not as similar as one might think. It is not enough for a tree to simply be n-dimensional for it to
fill n-dimensional space; it must also contain a closed box in n-dimensional space. The reason for this is that if the tree
overlaps itself significantly, the Hausdorff dimension would count many points more than once (by self-similarity, infi-
nitely many). Fig. 8 shows a skew, 2-branch tree that illustrates this difference.

The tree T we are looking for is also a skew, 2-branch fractal tree, with the same scaling ratio of 1=
ffiffiffi
23
p

, since we
want the Hausdorff dimension to be 3. The parameter that we must change is u. It turns out that T fills space when
u is a right angle, so T ¼ ð1=

ffiffiffi
23
p

; p
2
; 2ÞS . T has the following simple transformations:
T 1ð~xÞ ¼
0 0 r

r 0 0

0 r 0

2
64

3
75~xþ

0

0

1

2
64
3
75

T 2ð~xÞ ¼
0 0 �r

�r 0 0

0 r 0

2
64

3
75~xþ

0

0

1

2
64
3
75:
Fig. 9 shows T and its canopy, which seems to fill up a box. To prove this, however, we need to start by proving prop-
erties of a simple set of sequences.

Definition 6.3 (The L set). Let L be the set given by the sequence 1þ 1
2þ 1

4þ � � � with every possible combination of
signs. That is,
L ¼
X1
n¼0

rn

2n

�����rn 2 f�1; 1g
( )

:

Lemma 6.4 (Properties of L).

(a) { � l | l 2 L} = L

(b) {1 + l/2 | l 2 L} [ {�1 + l/2 | l 2 L} = L
A ‘‘3-dimensional’’ tree with parameters ð1=
ffiffiffi
23
p

; p
18
; 2ÞS , and its tip set (to 15 iterations). The tree certainly does not fill 3-space,

it may fill a 2-dimensional surface.



Fig. 9. A space-filling tree.
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Proof

(a) For any l 2 L, �l is given by switching the sign of each rn. Thus, �l 2 L. Since negation is invertible (�(�l) = l

for all l 2 L), we have trivially that �L = { � l | l 2 L} = L.
(a) Performing the union directly, we have
f1þ l=2jl 2 Lg [ f�1þ l=2jl 2 Lg ¼ 1þ
X1
n¼1

rn

2n

�����rn 2 f�1; 1g
( )

[ �1þ
X1
n¼1

rn

2n

�����rn 2 f�1; 1g
( )

¼ r0 þ
X1
n¼1

rn

2n

�����rn 2 f�1; 1g
( )

¼
X1
n¼0

rn

2n

�����rn 2 f�1; 1g
( )

¼ L
Though it may not be apparent, L is just a closed interval on the real line. h

Lemma 6.5 (Equivalent expression of L). L = [�2,2].

Proof. Let x be any real number in the interval [0,2] and let b0 Æ b1b2b3� � � be a binary representation of x. We can also
write x = s0s1s2s3� � � or x ¼ s0s1s2 � � � sm�1s	m, where each si = 000� � �01, and s	i ¼ 000 � � � (with an implicit decimal point
after the first digit of s0 or s	0). Note that it is possible for si to be the string consisting of a solitary 1. We now find an
element l of L such that l = x.

For each si ¼ bJi bJiþ1 � � � bJiþKi set rJ i ¼ 1 and rJ iþ1 � � � rJ iþKi ¼ �1, where Ki = Ji+1 � Ji � 1. If in the second case,
and the repeating zeros start at position m, set rJm ¼ 1 and rJmþk ¼ �1 for k P 1. We check that these assignments are
equivalent at each step, first for si:
XJ iþKi

n¼J i

bn

2n ¼
1

2J i

0

1
þ 0

2
þ 0

4
þ � � � þ 0

2Ki � 1
þ 1

2Ki

� 	
¼ 1

2J i

1

2Ki

� 	
¼ 1

2J iþKi

XJ iþKi

n¼J i

rn

2n ¼
1

2J i

1

1
� 1

2
� 1

4
� � � � � 1

2Ki

� 	
¼ 1

2J i

1

2Ki

� 	
¼ 1

2J iþKi
;

and also for s	m:
X1
n¼Jm

bn

2n ¼
X1
n¼J i

0 ¼ 0;
X1
n¼Jm

rn

2n ¼
1

2Ji
1�

X1
n¼1

1

2n

 !
¼ 1

2Ji
ð0Þ ¼ 0:
We now have the following:
x ¼ s0s1s2 � � � ¼
X1
n¼0

bn

2n ¼
X1
i¼0

XJiþKi

n¼J i

bn

2n ¼
X1
i¼0

XJ iþKi

n¼J i

rn

2n ¼
X1
n¼0

rn

2n ¼ l

x ¼ s0 � � � sm�1s	m ¼
X1
n¼0

bn

2n ¼
Xm�1

i¼0

XJiþKi

n¼J i

bn

2n ¼
Xm�1

i¼0

XJ iþKi

n¼J i

rn

2n ¼
X1
n¼0

rn

2n ¼ l:
Clearly, for x 2 [�2,0], we can use the above construction to find l = �x and simply negate every rn as discussed in
Lemma 6.4.a, so that �l = x. Thus [�2,2] � L.
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Finally, for any l 2 L,
jlj ¼
X1
n¼0

rn

2n

�����
����� 6

X1
n¼0

rn

2n

��� ��� ¼X1
n¼0

1

2n ¼ 2;
so L � [�2,2]. Therefore, L = [�2,2]. h

With this background in place, we can show that T fills space.

Theorem 6.6 (Space-filling tree). Let S* be the tip set of the fractal tree T with u = p/2 and r ¼ 1=
ffiffiffi
23
p

. Then
S	 ¼ ½�
ffiffiffi
4

3
p

;
ffiffiffi
4

3
p
� 
 ½�

ffiffiffi
2

3
p

;
ffiffiffi
2

3
p
� 
 ½0; 2�:
Proof. By Definition 2.5, the tip set S* is defined as the attractor of the iterated function system {T1,T2}. This we can
check by showing that S* is a fixed point of the set-valued function F(S) = T1(S) [ T2(S), or in other words, that
F(S*) = S*. We first show that
S	 ¼
rlx

r2ly

1þ r3lz

2
64

3
75
�������lx; ly ; lz 2 L

8><
>:

9>=
>;;
which we can do directly using Lemma 6.4:
F ðS	Þ ¼
rð1þ r3lzÞ

rðrlxÞ
1þ rðr2lyÞ

2
664

3
775
��������
la 2 L

8>><
>>:

9>>=
>>; [

�rð1þ r3lzÞ
�rðrlxÞ

1þ rðr2lyÞ

2
664

3
775
��������
la 2 L

8>><
>>:

9>>=
>>; ð1Þ

¼
rð1þ r3lxÞ

r2ly

1þ r3lz

2
64

3
75
�������la 2 L

8><
>:

9>=
>; [

rð�1� r3lxÞ
�r2ly

1þ r3lz

2
64

3
75
�������la 2 L

8><
>:

9>=
>; ð2Þ

¼
r 1þ 1

2
lx

� �
r2ly

1þ r3lz

2
664

3
775
��������
la 2 L

8>><
>>:

9>>=
>>; [

r �1þ 1
2
lx

� �
r2ly

1þ r3lz

2
664

3
775
��������
la 2 L

8>><
>>:

9>>=
>>; ð3Þ

¼
rlx

r2ly

1þ r3lz

2
64

3
75
�������lx; ly ; lz 2 L

8><
>:

9>=
>; ¼ S	; ð4Þ
where (2) was obtained by renaming, (3) by Lemma 6.4.a and the definition of r, and (4) by Lemma 6.4.b.
Finally, by Lemma 6.5, we have
S	 ¼ ½�2r; 2r� 
 ½�2r2; 2r2� 
 ½1� 2r3; 1þ 2r3� ¼ �
ffiffiffi
4

3
p

;
ffiffiffi
4

3
ph i


 �
ffiffiffi
2

3
p

;
ffiffiffi
2

3
ph i


 ½0; 2�: �
We can also find a tree Tn that fills n-dimensional space. First, we must generalize the notion of a fractal tree.

Definition 6.7 (Higher dimensional fractal tree). We denote an n-dimensional fractal tree by T ¼ ðr;u2;u3; . . . ;un�1; bÞ,
or (� � �)S, where r and b are as defined previously, and ui is the angle of rotation in the plane of coordinates i and i + 1.

It may be confusing for {ui} to start with i = 2, but this is because b still determines the h values, which are rotations
in the plane of coordinates 1 and 2.

Definition 6.8 (Generalized tree transformations). For an n-dimensional fractal tree T ¼ ðr;u2;u3; . . . ;un�1; bÞ, the
corresponding affine transformations are
T jð~xÞ ¼ R1;2ðhjÞ � R2;3ðu2Þ � � �Rn�1;nðun�1Þ þ~en
where hj = 2p(j � 1)/b, or 2pðj� 1
2
Þ=b if T is skew, and 1 6 j 6 b.

Using these definitions, we can find a tree Tn that fills n-dimensional space.
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Theorem 6.9 (Space-filling tree in n dimensions).
Let Tn ¼ ð 1ffiffi

2np ; p2; . . . ; p2; 2ÞS . Then
tipðTnÞ ¼
Yn�1

i¼1

�
ffiffiffiffiffiffiffiffi
2n�in

p
;
ffiffiffiffiffiffiffiffi
2n�in

ph i !

 ½0; 2�:
Proof. First, we must figure out the transformations for Tn. This is not hard due to all the right angles:
Ri;iþ1
p
2

� �
¼

I i�1 0 0

0
0 �1

1 0


 �
0

0 0 In�i�1

2
6664

3
7775; ð5Þ
so we have that
T 1ð~xÞ ¼ r

0 � � � 0 1

1 0 � � � 0

0 1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 1

2
66666664

3
77777775
þ

0

0

..

.

0

1

2
6666664

3
7777775

ð6Þ

T 2ð~xÞ ¼ r

0 � � � 0 0 �1

�1 0 � � � 0 0

0 1 0 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 0 1 0

2
6666664

3
7777775
þ

0

0

..

.

0

1

2
6666664

3
7777775
: ð7Þ
The proof from this point on is similar to that of Theorem 6.6. We again define S	n ¼ tipðTnÞ and express S	n in terms of
elements of L:
S	n ¼

rl1

r2l2

..

.

rn�1ln�1

1þ rnln

2
66666664

3
77777775

�������������
li 2 L

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:

We can again show this directly with Lemma 6.4:
F ðS	nÞ ¼

rrð1þ rnlnÞ
rrðrl1Þ
rðr2l2Þ

..

.

rðrn�2ln�2Þ
1þ rðrn�1ln�1Þ

2
66666666664

3
77777777775

����������������

li 2 L;

r 2 f�1; 1g

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð8Þ

¼

r rþ 1
2
ln

� �
r2l1

..

.

rn�1ln�2

1þ rnln�1

2
66666664

3
77777775

�������������

li 2 L;

r 2 f�1; 1g

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9Þ
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¼

rðl1Þ
r2l2

..

.

rn�1ln�1

1þ rnln

2
66666664

3
77777775

�������������

li 2 L;

r 2 f�1; 1g

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ S	n ð10Þ
where (9) was obtained by Lemma 6.4.a and the definition of r, and 4 by Lemma 6.4.b and then renaming the li.
We then have, by Lemma 6.5,
S	 ¼
Yn�1

i¼1

½�2ri; 2ri�
 !


 ½0; 2� ¼
Yn�1

i¼1

�
ffiffiffiffiffiffiffiffi
2n�in

p
;
ffiffiffiffiffiffiffiffi
2n�in

ph i !

 ½0; 2�: �
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