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Abstract

Eliciting Private Information from Selfish Agents
by
Rafael M. Frongillo
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Christos Papadimitriou, Chair

Ever since the Internet opened the floodgates to millions of users, each looking after their
own interests, modern algorithm design has needed to be increasingly robust to strategic
manipulation. Often, it is the inputs to these algorithms which are provided by strategic
agents, who may lie for their own benefit, necessitating the design of algorithms which
incentivize the truthful revelation of private information — but how can this be done? This
is a fundamental question with answers from many disciplines, from mechanism design
to scoring rules and prediction markets. Each domain has its own model with its own
assumptions, yet all seek schemes to gather private information from selfish agents, by
leveraging incentives. Together, we refer to such models as elicitation.

This dissertation unifies and advances the theory of incentivized information elicita-
tion. Using tools from convex analysis, we introduce a new model of elicitation with a
matching characterization theorem which together encompass mechanism design, scoring
rules, prediction markets, and other models. This lays a firm foundation on which the rest
of the dissertation is built.

It is natural to consider a setting where agents report some alternate representation of
their private information, called a property, rather than reporting it directly. We extend our
model and characterization to this setting, revealing even deeper ties to convex analysis
and convex duality, and we use these connections to prove new results for linear, smooth
nonlinear, and finite-valued properties. Exploring the linear case further, we show a new
four-fold equivalence between scoring rules, prediction markets, Bregman divergences, and
generalized exponential families.

Applied to mechanism design, our framework offers a new perspective. By focusing
on the (convex) consumer surplus function, we simplify a number of existing results, from
the classic revenue equivalence theorem, to more recent characterizations of mechanism
implementability.

Finally, we follow a line of research on the interpretation of prediction markets, relating
a new stochastic framework to the classic Walrasian equilibrium and to stochastic mirror
descent, thereby strengthening ties between prediction markets and machine learning.
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Chapter 1

Introduction

Information is the currency of our age. Entire occupations and disciplines are devoted to
creating, distributing, and exchanging information — and this information economy, run
on the platform of the internet, has become the nervous system of our civilization. Of
course, this nervous system is comprised of many different agents, often algorithmic, and it
is a natural question to ask how this information is, and should be, traded and exchanged
in this strategic environment. In other words, if information is a currency, how should we
design the currency exchange?

The field of algorithmic economics, also called algorithmic game theory, has a natural
vantage point to answer this question. This dissertation embraces this algorithmic and
economic perspective, and focuses on the one-sided exchange of information, that is, the
exchange of privately-held information for another currency or commodity.

Unlike most currencies, however, information is not always verifiable. Your bank will
confirm the amount of money received, but how would you know how accurate a weather
forecast is? It is easy to see that without any external signals, accuracy of information
is entirely subjective. To regain objectivity, we will make use of the fact that agents
are strategic, and will behave in such a way as to maximize their own welfare. This basic
economic model of behavior will let us leverage the incentives of the agent, to ensure honest
reports. This is what we mean by elicitation — the study of mechanisms to incentivize
the truthful reporting of private information by selfish agents.

This dissertation studies elicitation from a theoretical perspective, with an eye toward
characterization. That is, we seek to determine exactly when and how elicitation schemes
work. Our study spans many different models and settings, but for the most part we focus
our attention on three core models: scoring rules, prediction markets, and mechanism
design.

By and large, we will find that a unified study of an elicitation is not only possible,
but fruitful. Armed with tools from convex analysis, our main result is a general model
and characterization theorem which covers all three of these core models. From there,
we explore the intricacies of each domain, focusing on more nuanced characterizations
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and highlighting deep connections among the models and to machine learning, geometry,
statistics, and other domains.

After some nontechnical motivation in §1.1, we introduce the three core models in
§1.2. We will motivate our focus on characterizations in §1.3, followed by a more thorough
overview of our results in §1.4.

1.1 A tale of two elicitations

We begin with a pair of whimsical parables to motivate our study, hoping to convey both
the diversity and importance of elicitation models. The strictly technically-minded reader
may wish to skip straight to the literature review in §1.2.

1.1.1 When it rains, it peurs doesn’t rain

Meteorology is hardly a dry subject in the state of New York. After a successful career
leading a weather station in Ithaca, NY, our protagonist Marguerite found herself oversee-
ing all 23 weather stations in the state. Her primary responsibility was now to ensure the
accuracy of weather reports throughout the state. Being particularly interested in precipi-
tation, she instructed all stations to forecast, among their other predictions, the likelihood
of rain p € [0, 1] and the amount of rainfall » € R, in inches.}

After a few weeks, Marguerite took a look at forecasts given under her watch thus
far, comparing them to what weather was actually recorded. To her dismay, while some
stationmasters appeared to be doing their job, others were clearly not putting in as much
effort to make accurate predictions, some reporting apparently at random, and others
issuing the same forecast each day despite wildly changing conditions. And after some
thought, she realized, why would the stationmasters put in the effort? They were being
paid to issue forecasts, but they had no skin in the game; their accuracy was not being
enforced or even evaluated in any way.

Well, no more. Marguerite had a brilliant idea: make the salaries of the stationmasters
depend on the accuracy of their reports! Excited to try out her new plan, she informed all
23 stationmasters that 50% of their salary would be fixed, but the other 50% would be a
function of how accurate their reports were, particularly with regard to precipitation. As
soon as she had made the announcement, however, Marguerite realized that she needed
to come up with a way to quantify the accuracy. Not thinking much of it, and without
announcing her choice, she settled on a simple daily score: $50 times the reported proba-
bility of what actually happened (i.e. $50 - p if it rains and $50 - (1 — p) otherwise), plus a
bonus $30 if the rainfall » was within 0.1 inches of being correct. More precisely, the score
would be

$50 - (p 1{rain} + (1 — p)1{no rain}) + $30 - 1{|r — r*| < 0.1},

"We will say “rain” to refer to any type of precipitation.



where 1 is the indicator, and r* is the actual rainfall value.

At first, the plan worked phenominally. Reports were more accurate than ever, and
everyone seemed to be putting much more energy and effort into their predictions. When
payday arrived, however, several stationmasters were enraged by their salaries, and de-
manded to know exactly how Marguerite was calculating the accuracy. She obliged and
announced her formula to all, quelling the upset.

Unfortunately for Marguerite, the next month did not bode as well. After receiving
numerous complaints from citizens about the weather reporting, she took a look at the
forecast history once again. What she found surprised her. Not only were the reports bad,
they were substantially worse than before. And even the top meteorologists were botching
their forecasts. After examining the data, she noticed some peculiar patterns. The first
was that, except for the first few days after her announcement, nearly all probabilistic
forecasts were either 0 or 1 — that is, everyone was reporting with complete certainty
whether or not it would rain. The second pattern was even more shocking: almost a third
of the “100% chance of rain” forecasts were accompanied by a projection of 0 inches of
rainfall.

After discussing with colleagues, who were equally confused, Marguerite decided it must
be her scoring mechanism. She did a little research and discovered that a more common
way to evaluate rainfall forecasts was to use the relative error, or RE(r,7*) = |(r — 1) /7|.
Satisfied, she announced the change of the rainfall bonus from $30 - 1{|r — r*| < 0.1}
to $30 - (1 — RE(r,7*)), thus rewarding smaller relative errors. (Note that this may yield
a negative rainfall bonus if the reported rainfall is orders of magnitude too low, in which
case stationmasters would lose money.) To her relief, the rainfall estimates improved, but
a few weeks later she began getting calls about even more preposterous forecasts: stations
were reporting a 0% chance of rain with almost 2 inches of rainfall!

Exasperated, Marguerite was determined to solve the mystery of these bogus forecasts.
Comparing the data from each of the three months, she finally figured out what was
going on. Starting with the probabilities, she put herself in the stationmasters’ shoes and
imagined that she thought rain was 20% likely. Given that she would be paid $50 - p if rain
occured, and $50 - (1 — p) otherwise, it is clear that on average she is better off forgetting
about the rain and reporting p = 0; this gives an average of $40, which certainly beats
the average of $50 - ((0.2)% + (0.8)?) = $50 - 0.68 = $34 for reporting her actual belief. In
general, Marguerite's “linear score” was incentivizing the stationmasters to put all weight
on one of the two extremes.

Similar thinking told her that the first rainfall bonus $30 - 1{|r — 7*| < 0.1} would be
optimized by reporting the mode? of one's rainfall distribution, while the second bonus
$30 - (1 — RE(r,7*)) would yield a skewed median, favoring much higher values. This
explains why forecasters would report such bizarre combinations of forecasts: if one’s
belief about the rainfall were highly uncertain, the mode could be 0 while the total mass of
r > 0 could be above 0.5, and the first bonus would yield forecast “rain but no rainfall”;

2The mode of a distribution is the value with highest probability density.
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if a heavy storm were possible but unlikely, the second bonus would incentivize the report
“heavy rainfall but no rain." See Figure 1.1 for an illustration.

likelihood ——
likelihood ——

A

rainfall —— rainfall ——

(a) (b)

Figure 1.1: Two beliefs about rainfall values, represented here as probability measures (the
dot in (b) is a point mass on the value 0). Under the first rainfall bonus, belief (a) would
yield the report “rain but no rainfall,” while under the second rainfall bonus, belief (b)
would yield “rainfall but no rain.”

Glad to have solved the mystery, Marguerite used her line of reasoning to search for a
better scoring rule. How could she design a score whose incentives led to good forecasting?
It was then that she remembered something her old friend Carl Friedrich Gauss taught her:
the minimizer of (x —y)? on average over x is simply y. Inspired, she changed both scores
accordingly, yielding the new daily score of $100 — $50 - (p — 1{rain})? — $30(r — r*)2,
and as she easily verified, the score is maximized by forecasting one’s true belief about the
occurrence of rain, and one's mean belief about the rainfall. And thus it was that rain
forecasts for New York became so impeccably accurate.

1.1.2 Of rice and men

Ed was never terribly prone to charity, but he also hated rice. So when he accidentally
entered, and won, a raffle for lifetime monthly shipments of 40 bushels of rice, he decided
it was time to do a little good for the world. He happened to live a 20-minute drive from a
poor village. His calling was clear: each month, when the bushels arrived, go to the village
and distribute the rice.

April. After a warm greeting by the villagers, Ed explained that he wanted the rice to go
to those who were struggling most, and proceeded to ask each family how much rice they
would need for the next month. Tallying all of the numbers, he found the total demand
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from the village to be 80 bushels, double his supply. To be equitable, he halved each
request, distributed the rice accordingly, and returned home.

May. To be sure that he was continuing to serve the needs of the villagers, Ed once
again asked for each family’s needs for the month of May. To his surprise, everyone was in
greater need, so that in total the village needed 160 bushels. Ed nevertheless distributed
the rice proportionally, feeling slightly concerned that his rice would not go as far. Upon
leaving he announced that next time, due to his limited supply, no single family could
request more than a bushel.

June. When every family requested a bushel, Ed was hardly shocked, but what did
surprise him was how many new families had emerged — and no family was larger than 2
people! Surely familial schisms on such a massive scale could not be coincidental. After
again distributing his rice proportionally, indeed completely evenly this time, Ed started
thinking a bit more about what had transpired.

Clearly, he had failed to recognize that the families might be strategizing instead of
blindly telling him the truth. In May, villagers must have realized that his proportional
distribution meant that in order to get their request, they had to overshoot their needs. In
June, they got even more creative and divided their families up so that each “real” family
would have a higher relative share. Despite Ed'’s efforts to distribute the rice according to
the needs of the villagers, the data he was getting from them were essentially meaningless.

Ed needed a way to make honesty in the best interests of the villagers, but how? Then
it dawned on him that instead of fighting their clearly excellent ability to strategize, he
could use it to his advantage. Inspired, he devised a new plan.

July. Armed with a calculator and feeling clever, Ed returned to the village and an-
nounced his scheme. Each family would tell him 10 numbers, their value in dollars for
each additional fifth of a bushel. Then, he would give out the rice to maximize the to-
tal value of the villagers, and additionally, he would pay each family an amount equal
to what the other families valued their allotment. For example, if Ed had just 2 bushels
and families A, B, and C reported values (in USD) of v4 = [12,12,12,12,0,0,0, 0,0, 0],
vp = [4,4,4,4,4,4,4,4,4,4], and vc = [34,21,13,8,5,3,2,1,1,0], then the optimal al-
lotment would be 4/5 of a bushel to A, 1/5 of a bushel to B, and 1 bushel to C'; the
families value these allotments respectively at $48, $4, and $81, so the payments would
then be py = $85, pp = $129, and pc = $52. The villagers readily agreed to this plan,
and thankfully they provided Ed with much more reasonable answers this time. Once all
the numbers were collected, he set to work calculating the rice shares and corresponding
payments.

At sunset, Ed realized that his calculator was not up for the task — to figure out the
workloads, he needed to compute nearly a million intermediate values. Instead, he made
up some plausible numbers for the rice, and then readily computed the payments. On his
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way home, being exhausted and $1542 poorer himself, Ed vowed to simply drop off the
rice next time and let these clever villagers figure out how to distribute it themselves.

1.1.3 Discussion

These parables show the diversity of elicitation models, and give a flavor of the challenges
that arise in designing schemes to incentivize honesty. The first motivates the study of
scoring rules, which we introduce in §1.2.1, and illustrates how challenging it can be to
assess forecasts; indeed, all scoring functions mentioned have actually been used in practice,
and the relative error is still in use [50]. While some of the difficulty Marguerite faced came
from an ill-specified notion of an “accurate report,” the basic problem was the lack of a
calibrated score — she wanted honest and accurate forecasts to give the maximum average
score. We will see many variants of this model throughout the dissertation.

The second parable addresses a problem in mechanism design, a branch of microe-
conomic theory. Specifically, Ed was trying to implement a multi-unit auction, having
multiple bushels of rice and wishing to “auction” them off to the villagers. His June at-
tempt suffered from a lack of sybil-proofness, meaning that agents had an incentive to split
their identity into several copies; we will not address such concerns in this dissertation,
though in practice this is a very important consideration especially in computational set-
tings. The scheme from July is the most sophisticated, and is called the VCG mechanism;
see §1.2.3.

Unfortunately, as Ed saw, his July scheme suffered from two problems: a high imple-
mentation cost, and computational intractability. The first problem is actually easy to
fix; in addition to receiving cash equal to the value of the rice everyone else received, Ed
could have had each family f provide labor (e.g. work in his orchard) a number of hours
equivalent to the value of what everyone would have gotten had f not even participated
to begin with. Returning to the example above, at a labor cost of $10/hour, this would
yield labor amounts of L4 = (pa + 16)/10 = 10.1 hours, Lp = (pp + 3)/10 = 13.2
hours, and Lo = (pc + 20)/10 = 7.2 hours. This payment and rebate scheme is called
the Clarke pivot rule (Clarke is the ‘C’ in ‘VCG’). Note that as the amount of labor for
family f does not depend on the reports of f, the scheme is still truthful. Moreover,
Ed actually stands to gain in the transaction, as net payments to villagers (py — 10Ly)
are non-positive. For the computational intractability, Ed should have familiarized himself
with recent approximation results in algorithmic mechanism design; for example, Dobzinski
and Nisan [40] give an efficient mechanism which is truthful and which approximates the
optimal rice distribution.



1.2 The literature on elicitation

1.2.1 Scoring rules

Many authors point to the paper of Glenn W. Brier [26] as the earliest mention of what we
now call a proper scoring rule, or a proper loss in machine learning.3 The paper, published
in 1950 in the Monthly Weather Review, observed that verifying probability forecasts can
be challenging, and proposed a tool, now known as the Brier score, to measure predictions
once an outcome is known. It is instructive to quote directly from Brier, to get a sense of
his approach:

Suppose that on each of n occasions an event can occur in only one
of r possible classes or categories and on one such occasion, ¢, the
forecast probabilities are fi1, fi2, ..., fir, that the event will occur in
classes 1,2,...,r respectively. The r classes are chosen to be mutually
exclusive and exhaustive so that

T
d fi=1,i=123...n
j=1

A number of interesting observations can be made about a vertification
score P defined by

P= 23Sy By’ (11)

j=1 i=1

where E;;, takes the value 1 or 0 according to whether the event occurred
in class j or not.

One such interesting observation, as Brier points out, is that if p; is the actual frequency
of the event E;; over i, then p; will minimize the score P. (Of course, in the modern
formulation agents seek to maximize their score, which just amounts to negating P.) This
“calibration” property, that the optimal forecast is equal to the actual frequency, is what
we mean when we say a scoring rule is proper.

In its simplest incarnation, a scoring rule is simply a function &(-, -) taking two inputs,
a probability forecast p and an outcome x from some set of outcomes. The scoring rule
is proper if it is calibrated in the sense that if x is sampled according to some “true”
distribution p then for any p

Ep[S(p, x)] = Ep[S(p, x)].

%In this dissertation, we will use gains rather than losses, but all results pertaining to scoring rules hold
equivalently for proper losses as well.
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In other words, the forecaster maximizes the expected value of G by reporting the true
distribution.*

One of the most well-known examples is the logarithmic scoring rule defined by &(p, x) :=
log p(x), which was introduced in 1952 by I.J. Good in an independent study [52]. One
can check that once again the logarithmic score is proper, in that the expected score is
maximized when reporting the true distribution p.

Already in 1956, John McCarthy [71] observed the crucial role of convexity in this
theory of forecast scoring, noting that in some sense a scoring rule must be a derivative
of a convex function. In fact, the convex function is given by f(p) = &(p,p). He gives
intuition for this phenomenon as follows:

The intuitive content of the convexity restriction is that it is always a
good idea to look at the outcome of an experiment if it is free. For
suppose that the experiment has two outcomes, A and A*, which would
give one probabilities p and p* for the event in question. Let ¢ be the
probability that A is the outcome. If we decide not to look, our expec-
tation is f(tp+ (1 —¢)p*), while if we decide to look, our expectation is

tf(p)+ (1 =) f(p*).

In other words, the agent has a prior belief over distributions, with weight ¢ on p and 1—t on
p*, so before the experiment, the belief about the outcome is simply p = tp+(1—¢)p*. Not
running the experiment gives an expected payout of t&(p,p) + (1 —t)&(p, p*) = S(p, p),
which our definition of f(p). If the agent decides to carry out the experiment, however, she
will know the distribution of the outcome with certainty; thus the expected post-experiment
score, as computed before the experiment, is tS(p, p) + (1 —¢)S(p*, p*). Thus, if we want
the agent to have an incentive to perform this free experiment (i.e. to use all available
information), we must have f(p) > tf(p) + (1 — t)f(p*), meaning f must be a convex
function.

Building on McCarthy's paper, in 1971 Leonard Savage published a very general treatise
on eliciting “personal probabilities,” i.e. subjective probability estimates, in what is widely
considered to be the seminal work on proper scoring rules [92]. He motivates his study by
the problem of eliciting an agent's value for a commodity:

Suppose the experimenter offers, once and for all, to buy some of a com-
modity at each possible price—more accurately price rate—so much at
each rate. The subject will then have an incentive to satisfy the expressed
demands of the experimenter at all rates higher than the subject’s rate
r but not those at lower rates, thereby revealing 7.

*Interestingly, while propriety is a very natural condition for a scoring rule to have, and considered
necessary by some (cf. Gneiting [50]), it is quite common even today to encounter uncalibrated forecasts
in statistics, econometrics, meteorology, machine learning, and many other disciplines.
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That is, the experimenter proposes buying 1 unit of the commodity from the subject
at price $1000, another unit at $999, a third at $998, and so on until the reported value
r is reached. Clearly, the transaction is profitable to the subject while the rate is above
her true rate r, breaks even at r, and comes at a loss when the rate is below 7: hence, the
subject will report truthfully. We will revisit this clever idea in §3.4.3.

Applying the above result to the problem of eliciting probabilities, and more generally
expectations of random variables, Savage argues (more explicitly than McCarthy, though
still not completely rigorously) that a proper scoring rule should have the form,

S(p,x) = J(p) = J'(p) - (p — 1), (1.2)

where J(p) = &(p,p) is any strictly convex function and 1, is the indicator vector for
x. Savage goes on to give similar arguments that scoring rules for eliciting expectations
should have the same form (1.2).

Since Savage's 1971 paper, there has been a vast and diverse array of research on the
subject of proper scoring rules and related or extended models. A recent line of research
focuses on eliciting statistics, or properties, of distributions; see §3.1 and §4.1 for more
background. On the general topic of scoring rules, Gneiting and Raftery [51] give a more
modern discussion, and extend and generalize many scoring rule characterizations in the
literature, concluding that a generalizaton of the form (1.2) is necessary and sufficient even
when working with probability measures on arbitrary measure spaces.

1.2.2 Prediction markets

In 1907, a contest was held at the annual show of the West of England Fat Stock and Poul-
try Exhibition in Plymouth, to judge the weight of an ox. Each of roughly 800 participants
submitted an estimate, with the closest guesses winning prizes. After the fact, statistician
Francis Galton took a closer look at the estimates, and found to his surprise that while
each individual estimate was off by an average of roughly 3%, the median estimate was
accurate within 0.8% [48]. While Galton viewed this as support of democracy as a sensible
governing strategy, the general phenomenon that simple aggregations of estimates can
yield very accurate predictions is now commonly known as the wisdom of the crowd.
Markets, and particularly speculative markets, can be seen as carrying out such “ox-
weighing” contests every day. Traders buy and sell contracts directly linked to commodity,
and are in essence predicting its future price. Motivated by this, several markets, called
information markets or prediction markets, have arisen solely for the purpose of aggregating
information. These markets allow traders to buy and sell contracts amongst themselves
which are contingent on some future event or outcome. The contracts take a particular
form, called an Arrow-Debreu security, which pays off $1 if a given event occurs, and $0
otherwise. A risk-neutral trader who thinks event A will happen with probability p(A) = 0.3
would therefore stand to gain by buying the A security for any price less than $0.3, and by
selling for any price greater. Hence, the market price in some sense reflects the “consensus
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belief” of the traders. (What precise sort of consensus belief one can glean from prediction
market prices is a matter of debate; see Chapter 6.)

Thin markets and scoring rules

While prediction markets tend to produce highly accurate forecasts [19, 69, 101], they
are not without problems. Aside from legal issues, prediction markets in this continuous
double-auction format can suffer from a thin market problem. That is, trading volume can
be very low, resulting in a wide buy-sell spread, i.e. a large discrepancy between the highest
price at which one can sell and the lowest price at which one can buy. In the extreme,
the market may only have one trader who actually has information, and if everyone else is
aware of their own ignorance, no trade will occur, and the market price will be meaningless.

To circumvent the thin market problem, Hanson [56] proposed designing a prediction
market based on our old friend, the scoring rule. Instead of trading with each other,
participants would place bets with a central authority, known as a market maker, which
would continue to publish a joint forecast representing the “consensus hypothesis’ of the
market.

The framework itself is remarkably simple. The market maker publishes a proper
scoring rule & and an initial probability estimate py. On each round ¢ in a sequence, the
current consensus probability p; is posted, and any trader can place a bet by modifying
the probability to any desired value py11. In the end, the true outcome x is revealed to
the world, each trader receives a (potentially negative) profit of

S(pi+1,2) — S(pt, v). (1.3)

Notice two facts about this framework: (a) if a trader at time ¢ knows the true probability
p* then he always maximizes expected profit by setting p,y1 = p* and (b) because of
the telescoping sum, if pr is the final estimated probability then the market maker needs
only to pay out a total of S(pg,x) — &(pr, z). Hanson referred to this form of prediction
market as a market scoring rule and, when the logarithmic scoring rule from above is used,
this was called the Logarithmic Market Scoring Rule (LMSR).

Hanson's prediction market framework, which requires traders to make probability es-
timates and judges them according to a scoring rule, does not fit into our typical under-
standing of betting or financial markets, which as we described above have parties buy and
sell contracts whose payoff is contingent on future outcomes. A natural question to ask
is whether we can convert the market scoring rule betting language, in which traders are
asked to directly report probability predictions, into one in which traders simply purchase
Arrow-Debreu securities at prices set by the market maker.

Surprisingly, Hanson [56] showed that one could in fact view the LMSR as doing exactly
this. Instead of asking for probabilities on events 1,2,...,n, one can think of the market
maker as asking for trade requests on corresponding securities. When the prices for these
securities are adjusted very carefully in response to trades, the two settings would be
equivalent:



11

We can summarize all this by saying that each market scoring rule in
essence has a “net sales so far" vector s = {s;};, where each s; says
how many units have been sold of assets of the form “Pays $1 if the
state is 7.” The current unit price for a tiny amount of such an asset
is p;, and these prices change according to a price function p(s), which
is in essence a generalized inverse of the scoring rule function s(p). For
example, for the logarithmic scoring rule s;(p) = a; +blog(p;), the price
function is the exponential

e(si_ai)/b

= S (1.4)

pi(s)
Hence, in some sense, one can think of scores as being the securities themselves.

Is this just a cute trick using log and exp, or can this “securitization” be done for other
market scoring rules? In 2007, Chen and Pennock [33] showed that such a security-based
market is possible for a certain market scoring rules and proposed a market formulation
based on a cost function; we briefly sketch their framework here. As in Hanson's reduction,
some future outcome i € {1,...,n} will occur, and the market maker sells an Arrow-
Debreu security for each outcome. However, in this setting, the market maker is endowed
with a convex and differentiable cost function C': R® — R. The framework is as follows:

- Contract j pays $1 if and only if outcome j occurs.
- The “quantity vector’ ¢' € R™ is posted at each time ¢, where ¢/ = 0 € R™.

- At any point in time, a trader may purchase a “bundle” of shares described by
r € RY; that is, r; is the number of shares purchased for outcome .

- The price for bundle r at time t is C(q! + ) — C(¢).
- After selling r to the trader, the market maker updates ¢'*! « ¢! + r.

- At the close of the market, some outcome i is revealed, and the market maker pays
for all the winning contracts, a total cost of ¢!.

Notice that the “current market price” is represented by the derivative VC/(q), since
ViC(q) is the marginal cost of a tiny purchase of contract i. Thus, since the market prices
in equilibrium are the expected return of the contract, VC(q) should be the market's
probability vector. In fact, to avoid arbitrage opportunities, the market maker must ensure
that VC(q) is always a distribution. Chen and Pennock [33] went on to show how to
recover the LMSR using this cost-function framework. If we take

C(q) = blog (Z exp{(qi — ai)/b}> : (1.5)
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for constants b € R, a € R", then one can check that

elai—aq)/b

VZC(Q) — 42]{: G(Qk*ak)/b7

thus recovering Hanson's price function (1.4).

Larger outcome spaces

An important problem with the prediction market frameworks we have described thus far is
that they are not practical for large outcome spaces. Imagine a scenario where the outcome
is a combinatorial object, like the joint outcome of a single-elimination tournament with
n teams. In the case of the market scoring rule, we must ask each participant to submit
beliefs in the form of an entire distribution over the outcome space, here containing 2"~
outcomes. In the cost-function framework, the market maker is required to sell an Arrow-
Debreu security for each of these possible outcomes. Clearly neither of these will be feasible
for large n. One natural solution is to consider a small set of marginal probabilities, and
to have the betting language depend only on these values. It has been considered whether
a market maker can efficiently simulate LMSR pricing within this betting language, yet a
large number of these results have been negative [30, 29].

Abernethy et al. [1, 3] proposed a new framework for combinatorial prediction market
design which avoids some of these hardness issues. The idea is best explained by way
of example. Imagine a round-robin tournament which ends up with a (strict) ranking
of all n teams. Rather than have a single contract corresponding to each of the n!
outcomes, a market maker can sell only (g) contracts, one for each pair , j corresponding
to the predicate “does team i rank higher than team j7" This is often called a complex
or incomplete market, as the traders can only express beliefs in this lower-dimensional
contract space. Nevertheless, we can still use a cost function C' : R(:) 5 R to price these
contracts as we did in the complete market setting. The market maker will maintain a
quantity vector ¢q € R(g) and will price a bundle of contracts r € R() according to the
rule C(q+r) — C(q). Given any final ranking of the n teams, we can describe the payoffs
of all contracts by some z € {0, 1}(3) The trader who previously purchased bundle 7 will
receive r - x.

In this setting, how ought we design C'? Previously, in the complete market setting,
we noted that VC should always be a distribution. Abernethy et al. [1] showed that, in
a similar vein, C' must have the property that {VC(q) : ¢ € R(g)} be the convex hull
of all payout vectors = over all the n! possible outcomes. Letting H denote this convex
hull, they construct C' via conjugate duality (see [89, 95] and §3.3). If R is some strictly
convex function with domain H, then setting C(¢) = sup,cy = - ¢ — R(x) is sufficient to
guarantee the desired properties of the market.
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1.2.3 Mechanism design

The field of mechanism design is often considered the “engineering” side of economics.
Instead of studying the economic properties and equilibria of an existing fixed system, here
one considers designing a system to have certain properties or equilibria. In other words, in
addition to the usual agents, we add an additional agent called the mechansim designer or
principal, whose strategies are the payoff matrices that the other agents will face. Our tour
of mechanism design will be brief, as our results pertaining to mechanism design in §2.3.1
and Chapter 5 are for the most part set in their historical context. Hence, we focus on a
few key ideas that are central to the field and will come up throughout the dissertation.

Generally speaking, the mechanism designer chooses a mechanism, which simply speci-
fies a mapping from the (simultanous) inputs of the agents to an outcome, often called the
allocation. Typically, we think of the designer as having some social goal which depends
on some private information held by each agent, called the agent's type. For example,
in a standard single-item auction, the designer may wish to give the item to the person
who values it the most, but cannot do this directly as the desired outcome depends on the
agents’ private preferences.

To obtain the relevant information for her choice, the designer must leverage incentives
of the agents. That is, the designer must capitalize on the fact that agents have some
stake in the allocation; once chosen, the mechanism's allocation translates to some utility
of each agent, called the valuation, which depends both on the allocation and the agent's
private type. In most situations we will consider, part of this allocation is a debt of money,
called the payment to the mechanism, and it is common to make a quasi-linear assumption,
that an agents utility of some outcome and payment is the valuation of the outcome minus
the payment (see Definition 2.3). We will henceforth refer to the non-payment part of the
outcome of the mechanism as the allocation.

What the designer ultimately seeks then is a mechanism with two important properties:
(1) direct, meaning agents directly input a type to the mechanism, and (2) incentive
compatible or truthful, in that it is in the best interest of each agent to report their true
type. While "best interest” is yet undefined, typically truthfulness means that no matter
what the other agents report, the remaining agent is no better off lying than reporting his
true type. Assuming then that each agent is rational, such a mechanism would provide
the designer with all relevant information to make her choice.

Do any truthful mechanisms exist? In fact, they are easy to construct. Suppose for
simplicity that there is just a single agent. For each outcome o € O, choose some arbitrary
price p(0). Take each agent's reported type 6 as input, and select the outcome which
maximizes the agent'’s total utility v(0, 0) —p(0), where v is the agent’s valuation function.
Clearly, as the mechanism is already optimizing on behalf of the agent, the agent can only
hurt himself by misreporting his type. Amazingly, the above scheme, suitably generalized
to multiple agents, describes every truthful direct mechanism (cf. [77]). It goes by many
names—the direct characterization, the taxation principle, or the menu auction—and will
come up often throughout the dissertation.
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But what about the designer? In the above, we just saw how to gain the private
information from the agents, but in mechanism design, unlike in scoring rules or prediction
markets, typically we are not collecting information for information’s sake, but to achieve
some goal of the designer which merely depends on this information. Thus, a central
question in mechanism design is that of implementability: given some allocation function
f mapping agents’ types to a desired outcome, is there a payment function p which when
combined with f yields a truthful mechanism?

As it turns out, if the designer is interested in optimizing social welfare, she is in luck:
any allocation rule which selects the outcome maximizing the (weighted) sum of agents’
valuations can be implemented. This is a classic result due to Vickrey [97], Clarke [37], and
Groves [53], called the VCG mechanism. The key insight is the form of the payments mak-
ing the social optimum truthful, which intuitively charge each agent his or her externality
imposed on the other agents — in other words, each agent 7 must pay the mechanism what
i costs the other agents by simply participating. (See §1.1.2 for an example.) Surprisingly,
Roberts [85] showed that if the mechanism could potentially face agents with arbitrary
valuations, then (weighted) VCG mechanisms are the only truthful mechanisms.

As the direct characterization given above is often hard to work with when design-
ing mechanisms, much work in the field of mechanism design has been toward finding
simpler and more practical implementability conditions. The most famous one is due to
Myerson [72], which states that for a “single-parameter domain,” where types are real-
valued, an allocation function is implementable if and only if it is monotone for each
agent. For example, when auctioning off bushels of corn, the number of bushels allocated
to an agent (fixing the reports of all other agents) must be non-decreasing in the agent'’s
report. In higher dimensions, one must appeal to more complicated versions of monotonic-
ity, like cyclic monotonicity (CMON), which Rochet [86] adapted from convex analysis (cf.
Rockafellar [89]). We will explore these generalizations of monotonicity in great detail in
Chapter 5.

Once one has decided that an allocation rule is implementable, it of course remains to
find payments that render it truthful. Luckily, Myerson came to the rescue here as well,
with what is now called the revenue equivalence theorem: the payment rule is uniquely
determined up to a constant by the allocation rule. Note however that this “constant”
may depend on the reports of other agents. We will return to revenue equivalence in §5.3.

Finally, thus far we have considered only direct mechanisms, which raises the question:
can the designer gain something by asking agents something other than their raw type?
The answer turns out to be no. This is another classic result, called the revelation principle,
due to Gibbard [49] and later extended by Myerson [72, Lemma 1] and others [74]. The
idea is simple: if the input space were different from the type space, than any equilibrium
of the mechanism could be replicated by another mechanism which took the agents’ actual
types and selected the optimal report in the original mechanism. Hence, without loss of
generality, one can consider only direct mechanisms. The revelation principle will come up
several times in Chapter 3, where we extend our model to accept reports from an alternate
space.
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1.3 The importance of being characterized

The central focus of this dissertation is that of characterization: given a particular setting,
what are all truthful elicitation schemes or mechanisms? Of course, this is but one of many
questions one could ask, yet we deem this question the most fundamental and fruitful, for
reasons we now motivate.

1.3.1 Conceptual

We wish to characterize elicitation models in part because we seek deeper understanding
of what it means to be truthful. Can we paraphrase the raw truthfulness constraints in a
way that more clearly illuminates what can and cannot be done? Can we cast elicitation in
a light that enables new insights and intuition? In fact, we attempt just that by appealing
to the geometric language of convex analysis. We will put this geometric perspective to
use in Chapter 3, and to a lesser extent Chapters 4 and 5.

Beyond building intuition and constructing useful representations, we wish to see the
relationships among the different models. Scoring rules and prediction markets both elicit
probabilistic information from agents, yet seem to take wildly different approaches to doing
so — are these models related in any way, and if so, how? Are scoring rules more or less
expressive than prediction markets? Using characterizations for each model, we will answer
these questions and more in Chapter 4. We also explore connections between scoring rules
and mechanism design in Chapter 2.

1.3.2 Aligning incentives

Another reason to characterize is to account for what happens off the beaten path of Nash
equilibrium. While we often assume that agents will follow their own interests, the precise
incentives leading them there matter. One reason is that our models are imperfect: we
cannot hope to capture all incentives confronting an agent, or that agents will be perfectly
rational, and in these cases, we may want to make sure that the magnitude of the incentives
is strong enough to (mostly) counteract such errors (see e.g. [45]). In this subsection we
focus on another situation, when the principal herself is aquiring information merely as a
means to an end; she has her own utility function over outcomes of the mechanism or over
the information gathered, and wants to align the incentives of the elicitation to match her
own stake in the game.

Characterizations play a big role when reasoning about all payoffs at once, both in
and out of equilibrium. We would not be content with a single elicitation scheme which
guarantees that the agent will be truthful in equilibrium; rather, we would like to look at
all possible schemes, which by definition yield the same equilibrium behavior, and select
the one whose entire incentive structure fits best with our goals. For example, suppose it
costs an agent $1 to provide each bit of accuracy; then if L(r/,r) is the cost of the report
r’ to the principal when the correct report is r, the principal may want to encode her own
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incentives in the payoffs of the mechanism itself, to offset the cost to the agents for the
desired accuracy. But for which L can this be done? A characterization is exactly what
we need to answer this question.

To illustrate the importance of aligning incentives, we give a third parable, motivated
by a well-known problem in information theory.

Case study: compressing a data stream

Imagine a firm is looking to do compression on an unfamiliar channel, and from this channel
the firm will receive a stream of m characters from an n-sized alphabet which we will index
by [n]. The goal is to select a binary encoding of this alphabet to minimize the total bits
required to store the data, as a cost of $1 is required for each bit.

A first-order approach to encode such a stream is to assign a probability distribution
p € A, to the alphabet, and to select an encoding of character 7 with a binary word of
length log(1/p(7)) (we ignore round-off for simplicity). This can be achieved using Huffman
Codes for example, and we refer the reader to Cover and Thomas ([38, §5]) for more details.
Thus, given a distribution p, the firm pays L(p;i) = —logp(i) for each character i. It
is easy to see that if the characters are sampled from some “true” distribution p*, then
the expected cost L(p; p*) := Ei~p [L(p;i)] = KL(p*;p) + H(p*), which is minimized at
p = p*. Not knowing the true distribution p*, the firm is thus interested in finding a p
with a low expected cost L(p;p*).

An attractive option available to the firm is to crowdsource the task of lowering this
cost L(+;-) by setting up a prediction market. It is reasonably likely that outside individuals
have private information about the behavior of the channel and, in particular, may be able
to provide a better estimate p of the true distribution of the characters in the channel. As
just discussed, the better the estimate the cheaper the compression.

The firm takes the automated prediction market maker approach, as introduced in
§1.2.2. The firm announces that it will select a character from the stream uniformly at
random, and offers to buy or sell securities, one for each character ¢ of the stream alphabet,
which pay out $1 if 7 is selected and $0 otherwise. For the cost function C, the firm chooses
the LMSR, namely C(q) =log > 7" | exp(g;).

We have devised this payout scheme according to the selection of a single character
i, and it is worth noting that because this character is sampled uniformly at random from
the stream (with private randomness), the participants cannot know which character will
be released. This forces the participants to wager on the empirical distribution p of the
characters from the stream. While this approach has a high variance in the payout, the
firm can lower the variance by averaging the payout over all, or a large subset, of the
stream. That is, by paying out a 1/k fraction for each of k i.i.d. samples of the stream.
Given the above the discussion, the firm sets the initial share vector gy so that the prices
reflect the firm's guess at the stream’s empirical distribution, namely some pg € A,,.

We may naturally wonder: how does this prediction market benefit the firm that wants
to design the encoding? More precisely, if the firm uses the final prices pr of the market,
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instead of its initial guess pg, what is the trade-off between the money paid to participants
and the money gained by using the crowdsourced hypothesis? At first glance, it appears
that this trade-off can be arbitrarily bad: the worst case cost of encoding the stream using
the final estimate pr is sup; ,, —log(pr(i)) = oco. Amazingly, however, by virtue of the
aligned incentives, the firm has a very strong control of its total cost (the prediction market
payout cost plus the encoding cost). Suppose the firm scales the prediction market payouts
by a parameter «, to separate the scale of the market from the scale of the encoding cost
(which recall is $1 per bit). Then given any initial estimate pg and final estimate pr, the
expected total cost over p* is

Encoding cost of using pr given p* Total market payoff for getting advice pr
Total expected cost = m (H(p*) + KL(p*;pr)) + a(KL(p*;po) — KL(p";p1))
m H(p®) + (m — a)KL(p"; pr) + o KL(p™; po)

Let us spend a moment to analyze the above expression. Imagine that the firm set
o = m, the total number of characters to be encoded. Then the total cost of the firm
would be m (H (p*) + KL(p*; po)), which is bounded by mlogn for py uniform. Notice
that this expression does not depend on pr — in fact, this cost precisely corresponds to
the scenario where the firm had not set up a prediction market and instead used the initial
estimate py to encode. In other words, for a = m, the firm is entirely neutral to the
quality of the estimate pp; even if the market provided an estimate py which performed
significantly worse than pg, the cost increase due to the bad choice of p is recouped by
payments from the ill-informed participants.

The firm may not want to be neutral to the estimate of the crowd, however, and under
the reasonable assumption that the final estimate pp will improve upon pg, the firm should
set 0 < o < 1 (of course, positivity is needed for nonzero payouts). In this case, the firm
will strictly gain by running the market when KL(p*; pr) < KL(p*;po), but still has some
insurance policy if the estimate pr is poor.

1.3.3 Impossibility

Characterizations are as much about what is possible as what is impossible. After convinc-
ing ourselves that elicitation is possible in certain settings, we naturally begin to wonder
what the limitations are. What is the upper limit on what can be done?

Such questions are forefront in the field of algorithmic mechanism design, where com-
putational hardness results have left researchers wondering when a mechanism can approx-
imate some desired outcome in a truthful way. Showing that in some cases one cannot
achieve such truthful approximations, however, requires a characterization. Roberts’ the-
orem (see §1.2.3) and variants thereof are currently the main tools here, but characteri-
zations in restricted domains would allow us to draw the line of computational feasibility
more precisely.
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1.4 Overview and organization

We present our model of truthful elicitation in Chapter 2, and show that it generalizes
and extends both mechanisms and scoring rules, as well as several other models which
have appeared in the literature. Immediately we obtain results in both scoring rules and
mechanism design: a characterization of proper scoring rules for non-convex sets of distri-
butions, and a relaxation of an outcome compactness assumption needed by Archer and
Kleinberg [7] for allocation rules on non-convex type spaces.

We then turn in Chapter 3 to analyzing situations where, rather than asking for an
agent’s type, we wish to elicit a simpler representation of it. In the scoring rules context,
this has been studied as the elicitation of properties or statistics of a distribution, such as
the mean or median [92, 65, 50]. In mechanism design, this is implicit in settings such
as matching, where a ranking over potential matches is elicited rather than the agent’s
utility for them. We extend our model to this setting, and develop a corresponding char-
acterization theorem which generalizes our main result. We find that in essence properties
are nothing more than subgradient mappings of convex functions in disguise, and use this
insight to develop very general results. For example, we easily see that if a set of types or
distributions has positive measure in its convex hull then then there is a unique value of
the property almost everywhere. Finally, in §3.3 we further explore notions of duality which
stem from convex duality, and in §3.4 provide novel characterizations for the finite-valued,
linear, and smooth nonlinear cases.

In Chapter 4 we put our property results to use, showing a strong four-way equivalence
between Bregman divergences, scoring rules for linear properties, incomplete prediction
markets, and (generalized) exponential families. We show that each pair of these concepts
has its own interesting story, and explore these connections to give new insights; for
example, an incomplete prediction market can be expressed as a complete prediction market
whose prices are constrained to a generalized exponential family of distributions, whose
statistic is equal to the payoff function of the incomplete market.

We turn to mechanism design in Chapter 5, where we examine a number of charac-
terizations of when there exist payments that make a given allocation rule truthful. We
demonstrate the fundamental role of convexity in mechanism design by rephrasing these
results in terms of convex analysis, and instead of appealing to the commonly-used im-
plementability condition known as cyclic monotonicity, we directly apply the condition of
being a subgradient. This yields substantially simpler and more constructive proofs. We go
on to demonstrate how the revenue equivalence theorem from mechanism design falls out
almost automatically from our characterization, and apply results for finite-valued proper-
ties to produce a novel (non-)implementability check: in mechanisms which select among
a finite set of (allocation,payment) pairs, the sets of types that select each outcome are
not just polyhedral but form a power diagram.

We conclude in Chapter 6 with a study of the interpretation of prediction market prices.
Building on recent connections between prediction markets and learning, we show that the
standard automated market makers are in essence performing stochastic mirror descent
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when trader demands are sequentially chosen at random from a fixed distribution. This
provides new insights into how market prices (and price paths) may be interpreted as a
summary of the market's belief distribution, by relating them to the optimization problem
being solved. In particular, we show that under certain conditions, the stationary point of
the stochastic price process generated by the market is equal to the market's Walrasian
equilibrium from classic market analysis. Together, these results suggest how traditional
market making mechanisms might be replaced with general purpose learning algorithms
while still retaining guarantees about their behavior.

1.4.1 Bibliographic remarks

Much of this dissertation is based on work developed in collaboration with coauthors.
Chapters 2, 3, and 5 are based on joint work in progress with lan Kash [47], though large
parts of §3.4.2 and §3.4.3 were discovered with Jacob Abernethy. Chapter 4 is drawn
from work with Jacob Abernethy [4, 2] and ongoing work with Mark Reid and Robert
Williamson. Finally, Chapter 6 is adapted from joint work with Mark Reid and Nicolds
Della Penna [46].
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Chapter 2

Unifying elicitation via convex
analysis

In Chapter 1, we discussed several elicitation models and settings, where an agent has
private information and a mechanism wishes to extract the information via incentives. In
this chapter and the next, we introduce a new model of elicitaton which generalizes all of
these settings using tools from convex analysis. In our model, a single agent is endowed
with some type t that is private information and is asked to reveal it. After doing so, she
receives a score that depends on both her report ¢’ and her true type t.

For reasons that will become clear, we represent this as a function 20(¢')(¢) that maps
her reported type to a function that maps types to real numbers, with her score being this
function applied to her true type (equivalently her reported type selects from a parameter-
ized family of functions with the result applied to her true type). We allow 2l to be quite
general, with the main requirement being that 2(#')(-) is an affine! function of the true
type t, and seek to understand when it is optimal for the agent to truthfully report her
type. Given this restriction, it is immediately clear why convexity plays a central role —
when an agent’s type is ¢, the score for telling the truth is 20(¢)(¢) = supy A(¢')(t), which
is a convex function of ¢ as the pointwise supremum of affine functions.

We first discuss the role of convexity in mechanisms, scoring rules, and prediction
markets. We then state our model and result, and show how many existing elicitation
models are special cases of our model.

2.1 Convexity in elicitation

Viewing our model as a mechanism, 2((¢) can be thought of as the allocation and payment
given a report of ¢, which combine to determine the utility of the agent as a function of her

!A mapping between two vector spaces is affine if it consists of a linear transformation followed by a
translation.
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type.? In this context, (t)(t) is the consumer surplus function, and Myerson's well-known
characterization [72] states that, in single-parameter settings, a mechanism is truthful if and
only if the consumer surplus function is convex and its derivative (or subgradient at points
where it is not differentiable) is the allocation rule; we formalize this as Theorem 2.3. More
generally, this remains true in higher dimensions (cf. [7]). Note that here the restriction
that 2((¢') be affine is without loss of generality, since we may consider types as functions
mapping an outcome to the agent's utility for that outcome, and the evaluation of a type
on an outcome (or a distribution over outcomes) is affine in that type.

We may also view 2 as a scoring rule, where an agent is asked to predict the distribution
of a random variable and given a score based on the observed realization of that variable.
In this setting, types are distributions over outcomes, and 2A(¢')(¢) is the agent’s expected
score for a report that the distribution is ' when she believes the distribution is ¢. As an
expectation, this score is linear in the agent’s type, and hence affine.?

The role of convexity in the scoring rules literature dates back to 1956, when John
McCarthy [71] observed that scoring rules could be derived as a generalized derivative of a
convex function. This was clarified and extended by Savage in 1971, who showed explicitly
how to construct a scoring rule from a convex function (the negative of the Bayes risk
from decision theory) [92]. The general, modern characterization of scoring rules is due
to Gneiting and Raftery [51], who used a more nuanced convex analysis approach to
clarify and generalize a number of previous characterizations, including Savage [92] and
Schervish [93].

We will see in Chapter 3 and Chapter 4 how prediction markets may be encorporated
into our model, but for now we merely underscore the role of convexity. As we saw
in §1.2.2, the now-standard automated prediction market model of Abernethy et al. [1]
uses a convex cost potential function C'. In essence, this convexity enforces the same kind
of monotonicity as in mechanisms — the more a trader buys a particular contract, the
higher the price becomes. The convexity of C' arises from an axiomatic approach, and is
fundamental to the model.

The similarity between scoring rules and mechanism design was noted by Fiat et al. [45],
who gave a construction to convert mechanisms into scoring rules and vice versa. In this
chapter, we prove a general characterization, of which these characterizations of scoring
rules and mechanisms are special cases. Our proof is essentially a combination of Gneiting
and Raftery's scoring rule construction [51] with a technique from Archer and Kleinberg [7]
for handling mechanisms with non-convex type spaces. Our characterization not only shows
how mechanisms and scoring rules relate to each other, but also provides an understanding
of how results about mechanisms relate to results about scoring rules and vice versa. In
particular, many results in each literature are fundamentally results in convex analysis, and
by phrasing them as such it is immediately clear how they apply in the other domain.

2|t suffices to consider a single agent because notions of truthfulness such as dominant strategies and
Bayes-Nash are phrased in terms of holding the behavior of other agents constant. See [35, 7] and §2.3.1
for additional discussion.

3Since distributions lie on an affine space, any affine function can be implemented as well.
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2.2 Model and main result

To begin, we introduce the terminology which we use throughout the dissertation; see
Table 2.1 for notation. A function G : X — R is convex if G(axr + (1 — a)2’) <
aG(z) + (1 — a)G(2') for all z,2' € X and « € [0,1]. The domain of a convex G is the
set dom(G) = {z € X : G(z) < co}. G is a proper convex function if it never takes on
—o00 and its domain is nonempty. We write conv(.S) to denote the convex hull of vector
space X, the set of all (finite) convex combinations of elements of S. The relative interior
of a convex set .S is the interior when restricted to the smallest affine subspace containing
S; formally, relint(S) :={x € S:Vye SIA<1: Xx+ (1 — Ny € S} [103, pp. 2-3].
A topological vector space is locally convex if every neighborhood of 0 contains a convex
neighborhood of 0 [5, Def. 5.71].

R extended real numbers R U {—o0, o0}

[n] set {1,...,n}

A(X) set of all probability measures on X

Ay, set of all probability measures on X = [n]

1 all-ones vector in R with 1(z) =1 for all z € X

1, indicator or standard vector in R with 1,(x) = 1 and 0 otherwise
0 subgradient operator

idx identity function on X, idx : z — x

Lin(X —Y) set of linear functions from X to Y

Aff(X = Y) set of affine functions from X to Y

conv(S) convex hull of §

relint(.S) relative interior of S

dom(G) domain {x € X : G(z) < oo} of a convex function G
Eval, evaluation operator Eval,[f] = f(0)

KL(pl|q) relative entropy [ log (%) dp

Table 2.1: Notation

Let 7 C V for some vector space V. We consider a very general model with an agent
who has a given type t € T and reports some possibly distinct type ¢’ € T, at which point
the agent is rewarded according to some score 2l which is affine in the true type ¢t. This
reward we call an affine score. We wish to characterize all truthful affine scores, those
which incentivize the agent to report her true type t.

Definition 2.1. Any function 2 : T — A, where T C V for some vector space V and
A C Aff(V — R), is an affine score. We say 2 is truthful if for all t,t' € T,

A)(t) < A@)(2). (2.1)

If this inequality is strict for all t,t', then 2L is strictly truthful.
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Our characterization relies heavily on convex analysis, a central concept of which is the
subgradient of a function.

Definition 2.2. Given some function G : T — R, a function dG; € Lin(V — R) is a
subgradient to G att if for allt' € T,

G(t') > G(t) + dGy(t' —t). (2.2)
We denote by G or OG(t) the set of subgradients to G at t, and 0G = Uc10G,.

Before stating our characterization, we first must address the role of +00 as a viable
payoff. For mechanism design, it is typical to assume that utilities are always real-valued.
However, the log scoring rule (one of the most popular scoring rules) has the property
that if an agent reports that an event has probability 0, and then that event does occur,
the agent receives a score of —oo. Essentially solely to accommodate this, we allow affine
scores and subgradients to take on values from the extended reals.

Once one allows algebra on the extended reals, great care must be taken to avoid
the indeterminate expression co — oo. To address this point, it is standard (cf. [51]) to
restrict consideration to the “regular” case, where intuitively only things like the log score
are permitted to be infinite. Formally, we say a parameterized family of linear functions
(e.g. a family of subgradients) {dG; € Lin(V — R)}ie7 is T-regular if dGy(t) € R for
all t € T, and dGy(t) € RU {—oc} for t' # t.* Likewise, T-regular affine functions
{a; € Aff(V — R)}er have a4(t) € R for all t € T, and a;(¥') < oo for ¢ # t. In
particular, an affine score A : T — A is regular if A(t)(t) € R for all t € T, and
2A(t")(t) € RU{—o0} for ¢’ # t.

For the remainder of the dissertation we assume all affine scores and parameterized
families of linear or affine functions are T-regular, where 7 will be clear from context.
Note that certain results in the following three chapters require a stronger assumption that
the relevant parameterized families are in fact real-valued rather than simply regular. A
reader not interested in the details of how our framework incorporates the log scoring rule
can assume that all affine scores and families are real-valued throughout the dissertation
with little loss.

We now state, and prove, our characterization theorem. The proof draws techniques
and insights from Gneiting and Raftery [51] and Archer and Kleinberg [7], but in such a
way as to simplify the argument considerably.

Theorem 2.1. Let regular affine score 2 : T — A be given. 2 is truthful if and only
if there exists some convex G : conv(T) — R with G(T) C R, and some selection of
subgradients {dG}cT, such that

A (t) = G(t') + dGyp (t — t). (2.3)

“To define linear functions to R, we adopt the convention 000 = 0 (—c0) = 0. Thus, any
£ € Lin(V — R) can be written as {1 + oo - {2 for some {1,¢> € Lin(V — R). Similarly, Aff(V —
R)={t—L(t—v)+c|LeLin(V = R),v €V, cecR}, representing possibly vertical hyperplanes.
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Proof. It is trivial from the subgradient inequality (2.2) that the proposed form is in fact
truthful. For the converse, we are given some truthful 2 : 7 — A. Note first that for
any t € conv(T) we may write ¢ as a finite convex combination = Y™, a;t; where
t; € T. Now, as the range of 2 is affine, we may naturally extend 2(¢) to all of conv(7)
by defining

A (E) = Y ail(t)(ti). (2.4)
=1

One easily checks that this definition coincides with the given 2 on 7.

Now we let G(f) = sup;cs 24()(f), which is convex as the pointwise supremum of
convex (in our case affine) functions. Since 2 is truthful, we in particular have G(t) =
A(t)(t) € R for all t € T by our regularity assumption. Also by truthfulness, we have for
all ' € T and t € conv(T),

G(t) =sup Y o(t)(t:) = > iUt (i) = AX) () + > cae(t)(ti — t)
teT =1 i=1 i=1
=G)+A,(t)(E—1).
Hence, 2Ay(t') satisfies (2.2) for G at ¢, so 2l is of the form (2.3). O

2.3 Existing models as special cases

We conclude this chapter with several models and applications which demonstrate the
power of our framework. In particular, as we will see, both scoring rules and mechanisms fit
comfortably within our framework. We defer treatment of prediction markets to Chapter 4,
as we will need the notion of indirect elicitation which we introduce in Chapter 3.

2.3.1 Mechanism design

We will now show how to view a mechanism, introduced in §1.2.3, as an affine score. First,
we formally introduce mechanisms, in the single agent case (see below for remarks about
multiple agents).

Definition 2.3. Given outcome space O and a type space T C (O — R), consisting of
functions mapping outcomes to reals, a (direct) mechanism is a pair (f,p) where f : T —
O is an allocation rule and p : T — R is a payment. The utility of the agent with type t
and report t' to the mechanism is U(t',t) = t(f(t')) — p(t'); we say the mechanism (f,p)
is truthful if U(¢',t) < U(t,t) forall t,t' € T.

Here we suppose that the mechanism can choose an allocation from some set O of
outcomes, and there is a single agent whose type t € T is itself the valuation function.
That is, the agent’s net utility upon allocation o and payment p is t(0) — p. We may view
the type space 7 as lying in the vector space V = R?: by definition, for any vy, v € V,
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we have (v; 4+ avg)(0) = v1(0) + ava(0), so v1 + avy € V. So while we have made
no assumptions about O or the form of v; and wo, this function application, called the
evaluation operator Eval,[v] = v(0), is a linear operation. Thus, given any outcome
o and constant ¢, the mapping t — t(0) + c is an affine function from 7 to R. In
particular, this holds for the utility of an agent U(¢,-) = Eval,[t] — p(0) given that our
mechanism chooses outcome f(t') = o. (While according to our definition p depends
directly on the report t/, it is easy to see that for any truthful mechanism, p depends on
t' only through the allocation o = f(#'); otherwise agents with t € f~!(0) would always
report argming, r;—, p(t).) Thus, we have an affine score 2(t')(t) = U(t,t), where
A={t—t(o)+c|oe€ O,ceR}, so that every combination of outcome and payment a
mechanism could choose is an element of A.

Merely as an illustration, we will use Theorem 2.1 to show two simple characterizations
that have appeared in the mechanism design literature. The first is the direct characteri-
zation, which simply states that a mechanism must optimize on behalf of the agent. More
precisely, we consider the mechanism which assigns a price p(0) € R to each outcome and
chooses the outcome and corresponding price that maximizes the agent's welfare:

f(t) € argsup {t(o) — p(o) : 0 € O}. (2.5)

We show that this mechanism is truthful, and moreover every truthful mechanism can be
represented this way.

For the forward direction, we pick prices p : O — R and set G(t) = max,co t(o) —
p(0).> As G is a pointwise maximum of affine functions, it is convex. For a convex function
defined in this manner, it is easy to verify that if 0* € argmax,.» t*(0) —p(0), then Eval,-
is a subbgradient of G at t*:

G(t*) + Eval,-[t — t*] = max {t*(0) — p(0)} +t(0*) —t"(0")

— t(0") - plo") < maxt(0) — p(0) = G(t).
o€

Thus, letting f(t) = argmax,co t(0) — p(o) for all ¢, we can apply Theorem 2.1 to show
that the affine score (') (¢t) = t(f(t')) — p(f(¢')) is truthful.

For the converse, let truthful mechanism f, p be given. As argued above, p must depend
on t' only through f(t'), and hence we may re-represent it as a function p : O — R
so that U(t',t) = t(f(¢')) — p(f(¢')). But then by the proof of Theorem 2.1 we have
U(t,t) = maxy t(f(t') — p(f(t')) = max, t(0) — p(0) as desired.

The above discussion could have been greatly simplified by appealing to the following
simple fact about affine scores:

Proposition 2.2. An affine score 2 : T — A is truthful if and only if
2(t) € argsup {a(t) : a € A(T)}. (2.6)

® Strictly speaking we need to appropriately restrict 7 or O so that this in fact a maximum rather
than a supremum for our VCG-style mechanism of giving the agent her preferred outcome to even be well
defined.
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The proof is trivial and follows directly from Definition 2.1. Unfolding the result and
using the definition of a mechanism then yields the form (2.5), again appealing to the fact
that only the lowest price for a given outcome will ever be chosen.

The result that all mechanisms have the form (2.6) is sometimes called the taxation
principle, and the form of the mechanism is called the menu auction, referring to the
“menu” of allocations and prices {(0,p(0))} available to the agent. This is an important
representation for any affine score, as we will see in Chapter 3 and specifically §3.3.2.
Interestingly, as we will see, the menu always satisfies p(0) = G*(Eval,), where G(t) =
U(t,t) and G* is the convex conjugate of G.

We proceed to our second second characterization, due to Myerson [72], for a single
parameter setting (i.e. when the agent's type can be described by a single real number).
The result states that an allocation rule is implementable, meaning there is some payment
rule making it truthful, if and only if it is monotone in the agent’s type. We will explore
monotonicity conditions in higher dimensions in Chapter 5.

Theorem 2.3 (Myerson [72]). Let T = R4, O C R, so that the agent’s valuation is t - o.
Then a mechanism f,p is truthful if and only if

i. f is monotone non-decreasing in t,
ii. p(t) =tf(t) fo F()dt'" + po.

Proof. By elementary results in convex analysis f is a subgradient of a convex function on
R if and only if it is monotone non-decreasing. By Theorem 2.1, the mechanism is truthful
if and only if f is the subgradient of the particular function G(t) = U(¢t,t) = tf(t) — p(t),
which is equivalent to (i) and the condition G(t fo fhdt' +C. O

Finally, we remark on what may appear as limitations in our approach. First, note that
we have focused on the single-agent case here, even though much of the mechanism design
literature addresses the multi-agent case. In some sense, extending our characterizations
to multiple agents is trivial: a mechanism is truthful if and only if it is truthful for agent ¢
when fixing the reports of the other agents. Hence, we merely apply our characterization
to each single-agent mechanism induced by reports of the other agents. This is sufficient
for our present study, but there are certainly reasons to take a more nuanced approach to
the multi-agent setting — see §5.4 for further discussion.

Another apparent limitation is that we are locked into a deterministic and non-Bayesian
setting. This is purely for ease of exposition; if one is interested in randomized mechanisms,
one can take f : 7 — A(O) and define U(t',t) = E,pu)[t(0)] — p(t'), which is still
affine in t. Even if one does not assume risk-neutral agents, taking the outcome space to
be O = A(O) is sufficiently general. Finally, Bayesian agents can also be represented; in
the above discussion of the multi-agent setting, take expectations instead of fixing specific
values for the other agents.
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2.3.2 Scoring rules for non-convex P

In this section, we show that the Gneiting and Raftery characterization is a simple special
case of Theorem 2.1, and moreover that we generalize their result to the case where the
set of distributions P may be non-convex. We also mention a result about local properness
using tools we will develop in §5.1.2. To begin, we formally introduce scoring rules and
show that they fit into our framework.

Definition 2.4. Given outcome space O and set of probability measures P C A(O), a
scoring rule is a function G : P x O — R. We say & is proper if for all p,q € P,

EonplS(g; 0)] < Eonp[S(p, 0)]. (2.7)
If the inequality in (2.7) is strict, then & is strictly proper.

Just as above for mechanisms, the type space here is trivial: 7 = P. Thus, we need
only construct the correct set of affine functions available to the scoring rule as payoff
functions. In this case, letting F be the set of P-quasi-integrable® functions f : O — R,
we simply choose 7 =P and A = {p — [, f(0)dp(o)|f € F}. Note that in this case
A actually contains linear functions of p, which are trivially affine. Thus, a scoring rule &
is an affine score 2 : T — A for the above choices of 7 and A.

We now apply Theorem 2.1 for our choice of 7 and A, which yields the following
generalization of Gneiting and Raftery [51].

Corollary 2.4. For an arbitrary set P C A(O) of probability measures, a regular’ scoring
rule S : Px O — R is proper if and only if there exists a convex function G : conv(P) — R
with functions G, € F such that

S(p, 0) = G(p) + G, (0) — /OGp(o)dp(o), (2.8)

where G : ¢ = [, Gp(0) dq(o) is a subgradient of G for all p € P.

Proof. The given form is truthful by the subgradient inequality. Let 2 : 7 — A be a given
truthful affine score. Since A(p) € A, we have some f,, € F generating A(p). We can
therefore use G, : ¢ — fo fp(0)dg(o) as the subgradients in the proof of Theorem 2.1,
thus giving us the desired form. O

Importantly, Corollary 2.4 immediately generalizes [51] to the case where P is not
convex, which is a new result to the scoring rules literature. Previously, in the absence of
a characterization, several authors have nonetheless worked in the non-convex P case. For
example, Babaioff et al. [13] examine when proper scoring rules can have the additional

°We say that f: O — R is P-quasi-integrable if [, f(0)dp(o) € R for all p € P.
"This is the same concept as with affine scores: scores cannot be 0o and only incorrect reports can
yield —oo.
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property that uninformed experts do not wish to make a report (have a negative expected
utility), while informed experts do wish to make one. They show that this is possible in
some settings where the space of reports is not convex. Our characterization shows that,
despite not needing to ensure properness on on reports outside P, essentially the only
possible scoring rules are still those that are proper on all of A(Q). Similarly, Fang et
al. [43] find conditions on P for which every continuous “value function” G : p — &(p,p)
on P can be attained by some G. Given that a convex function can take on arbitrary
values on the boundary of a strictly convex set (e.g. if it takes on —oo on the relative
interior), it would seem that our approach would provide insights to that question as well.

We will explore local truthfulness conditions in §5.1.2, where one verifies that an affine
score is truthful by checking that it is truthful in a small neighborhood around every point.
While this is a natural property to examine in mechanism design, it is a less common
concern for scoring rules designers, as they tend to operate under fewer constraints than
mechanism designers. Nevertheless, our results from §5.1.2 will apply, and in particular
Corollary 5.4 shows that local properness is equivalent to global properness for scoring rules
on convex P.

Corollary 2.5. For a convex set P C A(QO) of probability measures, a scoring rule & :
P x O — R is proper if and only if it is (weakly) locally proper.

2.3.3 Decision Rules

Theorem 2.1 also generalizes Gneiting and Raftery’s [51] characterization to settings be-
yond eliciting a single distribution. For example, a line of work has considered a setting
where a decision maker needs to select from a finite set D of decisions and so desires to
elicit the distribution over outcomes conditional on selecting each alternative [80, 32, 31].
Since only one decision will be made and so only one conditional distribution can be sam-
pled, simply applying a standard proper scoring rule generally does not result in truthful
behavior. Applying Theorem 2.1 to this setting characterizes what expected scores must
be, from which many of the results in these papers follow. As it is not our main focus, we
refrain from introducing the model necessary to explicitly state a characterization result
similar to Corollary 2.4.

2.3.4 Proper losses for partial labels

Several variants of proper losses have appeared in the machine learning literature, one of
which is the problem of estimating the probability distribution of labels for an item when
the training data may contain several noisy labels, possibly not even including the correct
label. (This is frequently the case, for example, when using crowdsourced labels for items.)
More formally, one wishes to estimate p € A,, where the true label y € [n] is drawn from
p. However, instead of observing a sample y ~ p and designing a proper loss ¢(p,y), one
instead only observes some noisy set of labels S C [n]. Hence, the task is to design a loss
£(p, S) which when minimized over one's data yields accurate estimates of the true p.
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Recently this problem was studied in [36] under the assumption that S ~ ¢ where
q = Mp for some known M € R%"*" meaning if the observed label is drawn from p, the
noisy set of labels is drawn from Mp (using some indexing of the sets, say lexographical).
Cid-Sueiro provides a characterization of all proper losses for this setting, and we merely
note that the (negative) payoff Egnsp[¢(p,S)] = £(p,-) T Mp is linear in the underlying
distribution p, so our Theorem 2.1 applies and allows us to recover her first characterization
result. Again, we refrain from introducing the model necessary to explicitly state this result.
Note that this is essentially a latent observation setting, and the fact that what we observe
is a set of labels is in no way necessary — any observed outcome whose distribution has a
linear (or affine) relationship with the latent outcome would suffice to apply our theorem.

2.3.5 The Q branching model

Several mechanism design settings considered in the literature have some form of ex-
ogenous randomization, in that “Nature” chooses some outcome w according to some
(often unknown) distribution, which may in turn depend on the allocation chosen by the
mechanism. Examples include sponsored search auctions [44], multi-armed bandit mecha-
nisms [14], and recent work on daily deals [27]. The work of Cai et al. [27] introduces a
very general model for such settings, which we now describe.

Let O be a set of allocations, and for each allocation o and each agent i, let Qb
be some set of outcomes. Agents each have a valuation function v* : @ — R and a set
of beliefs pi? € A(Q"°) for each allocation 0 € O. The mechanism aggregates all of
this information into a single allocation o, and additionally choses some payoff function
s Q4° — R, so that the final utility of agent i is v’(0) + E,i0[s']. A mechanism is
truthful if for all values of v and p for the other agents, agent ¢ maximizes her total utility
by reporting v* and p’ = (p*°),co truthfully. For example, the standard sponsored search
setting has Q%° = {click, no click} for o such that i is allocated a slot, and the probabilities
p»° are assumed to be public knowledge.

We first observe that this model can easily be cast as an affine score, as follows. For
simplicity, we fix some agent ¢ and focus on the single-agent case; as discussed several
times above, this is essentially without loss of generality. The type space is simply the
combined private information of the agent,

T:{(v,p):vEO—HR,pE HA(Qi»O)}. (2.9)

0eQ

The utility of the agent upon allocation and payoff o, s is simply v(0)+Ep.[s] = Eval,[v]+
s1!p, which is linear in the type t = (v, p) and therefore affine. (Here we represent p as a
matrix in RO*%"” and s € R%"’, and define 1, to be the standard vector with 1 at entry
o and 0 elsewhere.) Thus, letting ¢ = (v, p), we can represent this as an affine score:

At () = v(o(t)) + E o [s(t)]. (2.10)
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Motivated by incorporating the utilities of the end consumers in a daily deal setting,
Cai et al. [27] ask when one can implement an allocation rule of the form f(v,p) =
argmax,co v(0) + g°(p°); in other words, when does there exist some choice of score

s(v,p) € RO 7 making f truthful. They conclude that this can be done if and only
if g° is convex for each 0 € . It is interesting, and perhaps illuminating, to view this
question in terms of our affine score framework.

Stepping back for a moment, consider a type space 7 C V = VX x VY which partitions
into two (subsets of ) subspaces. We wish to know when a function f : 7 — Lin(VX — R)
is implementable, in the sense that there exists some truthful affine score A : 7 — A, A C
Aff(V — R), and some h : T — Aff(VY — R) such that 2(¢')(t) = f(¢')(tX) +h(t) (),
where of course t = (tX,t¥). That is, when can we complete the partial “allocation” f
into a truthful affine score?

For convenience, for each a € A we write X(a) € Lin(WX — R) to be the linear
part of a on VX, and Y (a) to be the affine part of a on VY. Then we have that f is
implementable if and only if

f(t) € argsup x(t*) + sup {Y(a)(t")} (2.11)
z€X (A) XC(Lg)iz

To see this, for one direction we simply unfold the direct characterization for affine scores,
Proposition 2.2, by taking the supremum first over X (.A) and then over the rest. For the
other direction, note that taking 24(t')(t) = f(t')(t*) +y(¥')(tY) where y is in the argsup
of the supremum of eq. (2.11) gives a truthful affine score.

Returning to the setting at hand, let us denote by a,, € A the function (v,p) —
v(0') + E . [s]. We now see that f(v,p) is implementable if and only if it satisfies

f(v,p) € argsup {v(o) + sup {Ep [3]}} . (2.12)

o€ S:Go,sE€EA
Thus, letting g°(p°) = sup {Epo[s] : ao s € A}, we see that g° is convex as the supremum
of affine functions. Moreover, given any collection of convex functions {g°},c0, where
g° : A(24°) — R, we can define S° = {w + g(p) + dg(ly, — p) : p € dom(g)} and
A={ay,s:0€ O, s e S°, thus recovering each ¢g° in the above expression. It then only
remains to show that no other nonconvex function can serve in the argsup; for this one
may appeal to the argument of Cai et al. [27] which observes that the indifference points
between different allocations is fixed, thus determining the function in the argsup up to a
constant.

2.4 Discussion

We have presented a model of truthful elicitation which generalizes and extends both
mechanisms and scoring rules. On the mechanism design side, we will see in Chapter 5
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how our framework provides simpler and more constructive proofs of a number of known
results, some of which (as we saw in Section 2.3.2) lead to new results about scoring
rules. We generalize our model in Chapter 3 to allow reports of a succinct representation
of an agent's private information rather than that information itself, a topic that has been
studied in the scoring rules literature about eliciting properties of distributions.

Our analysis makes use of the fact that 2A(¢')(¢) is affine in ¢ to ensure that G(t) =
supy A(t')(t) is a convex function. However, this property continues to hold if A(')(t) is
instead a convex function of £. Thus, a natural direction for future work is to investigate
characterizations of convex scores. While mechanisms can always be represented as affine
functions by taking the types to be functions from allocations to R, it may be more
natural to treat the type as a parameter of a (convex) utility function. While many such
utility functions are affine (e.g. dot-product valuations), others such as Cobb-Douglas
functions are not. Berger, Miiller, and Naeemi [20, 21] have investigated such functions and
given characterizations that suggest a more general result is possible. Another potential
application is scoring rules for alternate representations of uncertainty, several of which
result in a decision maker optimizing a convex function [55].

In one sense getting such a characterization is straightforward. In the affine case we
want 2((¢')(t) to be an affine function such that 2A(¢')(¢t) < G(t) and A(t')(t') = G(t').
Since we have fixed its value at a point, the only freedom we have is in the linear part of
the function, and being a subgradient is exactly the definition of such a linear function.
So while our characterization of affine scores is in some sense vacuous, it is also powerful
in that it allows us to make use of the tools of convex analysis. A similarly vacuous
characterization is possible for the convex case: 2(t')(t) is a convex function such that
At (t) < G(t) and A#')(t') = G(t'). The challenge is to find a way to state it that
is useful and naturally handles constraints such as those imposed by the form of a utility
function.

While in this dissertation we focus on mechanism design, scoring rules, and prediction
markets, another interesting direction to pursue is other settings where our results may be
applicable. One natural domain that is closely related to scoring rules for properties is the
literature on M-estimators in machine learning, statistics and economics. Essentially, this
literature takes a loss function (i.e. a scoring rule) and asks what property it elicits. For
example, the mean is an M-estimator induced by the squared error loss function. Some
work in this literature (e.g. [75]) requires that the loss function satisfy certain conditions,
and our results may be useful in characterizing and supplying such loss functions.
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Chapter 3

Duality and general property
elicitation

In many settings, it is difficult, or even impossible, to have agents report an entire type
t € T. For example, when allocating a divisible good (e.g. corn) where O = R, a
mechanism with 7 = (O — R) requires agents to submit an infinite-dimensional type.
Even type spaces which are exponential in size can be problematic from an algorithmic
perspective. Moreover, in many situations, the principal is uninterested in all but some
small asepect of an agent’'s private type. For example, the information is often to be used
to eventually make a specific decision, and hence only the information directly pertaining to
the decision is actually needed — why ask for the agent's entire probability distribution of
rainfall tomorrow if a principal wanting to choose between {umbrella, no umbrella} would
be content with its expected value?

It is therefore natural to consider a model of truthful reporting where agents provide
some sort of summary information about their type. Such a model has been studied in
the scoring rules literature, where one wishes to elicit some statistic, or property, of a
distribution, such as the mean or quantile [92, 65, 50]. We follow this line of research,
and extend our affine score framework to accept reports from a different (intuitively, much
smaller) space than 7.

Our results shed light on the structure of properties and their affine scores. As we
shall see, property elicitation is intimately connected to a notion of duality between the
report space and the type space, which stems fundamentally from vector space duality and
convex conjugate duality. We formalize and explore this duality, and our results reveal a
very rich theory of elicitation.

3.1 Previous literature on properties

The literature on property elicitation lies essentially entirely within the domain of scoring
rules and statistics. This is not to say that one cannot find plenty of cases in mechanism
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design and other elicitation domains where an agent is asked to report something different
than their true type — indeed, such indirect revelation mechanisms 9t are quite common
— but in these models it is usually implicit that either (a) a direct revelation mechanism
M’ will be constructed, which requests the agent’s full type and provides the best report
to 9t on behalf of the agent, or (b) there is no a priori relationship between the “truthful”
report and the underlying type. That is to say, while indirect elicitation has been studied
outside of the scoring rules literature, it is only the latter that explicitly requests a mapping,
usually a statistic, from the underlying type to the desired information.

As we discussed in §1.2.1, the study of indirect elicitation in scoring rules can be
traced to Savage, who considered the problem of eliciting expected values of random
variables [92]. Osband [79] goes on to provide a rigorous version, generalizing to expected
values of functions of the underlying variable. (We will explore expectation elicitation
in Chapter 4 as well as §3.4.2 in the present chapter.) More generally, Gneiting and
Raftery [51] and Gneiting [50] consider other common statistics as well, such as quantiles,
ratios of expectations, and expectiles.

While these and many other examples of specific statistics have appeared in the litera-
ture, it was perhaps Lambert et al. [65] who first considered the following general problem:
given an outcome space O and an arbitrary map I' : A(O) — R, under what circumstances
can we construct a proper scoring rule G : R x O — R for I, i.e. where

I'(p) € argmaxE,~,[S(r, 0)]
reR
for every p € A(O)? Moreover, what is the full classification of functions I which can be
elicited in this way? Lambert et al. [65] make a number of significant contributions towards
these goals for the special case of scalar properties, where I' is real-valued. Lambert and
Shoham [66] also characterize elicitable properties I' which take on finitely many values,
showing a connection to power diagrams from computational geometry — we will extend
this result to our setting in §3.4.1.

In the present chapter we take a similarly general approach to the problem of indirect
elicitation. We ask, given an arbitrary multivalued map I' which specifies the correct
report(s) for a given type, whether I" can be elicited by an affine score, and if so, which
scores elicit it. While this may seem too general a problem to consider, as we have made
no assumptions on I' whatsoever, we find that even at such great heights of abstraction,
we can employ our tools from Chapter 2 and from convex duality to make precise and
useful statements about the nature of indirect (and direct) elicitation.

3.2 Extending our model and characterization

We wish to generalize the notion of an affine score to accept reports from a space R which
is different from 7. To even discuss truthfulness in this setting, we need a notion of a
truthful report r for a given type t. We encapsulate this notion by a general multivalued
map which specifies all (and only) the correct values for ¢.
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Definition 3.1. Let R be some given report space. A property is a multivalued map
I' : T = R which associates a nonempty set of correct report values to each type. We let
', ={t e T|rel(t)} denote the set of types t corresponding to report value r.

One can think of I';. as the “level set” of I' corresponding to value 7. This concept will
be especially useful when we consider finite-valued properties in Section 3.4.1. A natural
constraint to impose on these level sets is that they be non-redundant, meaning no property
value 7 has a level set entirely contained in another.

Definition 3.2. Property I' : T = R is redundant if there exist r,7’ € R such that
I, CT,. Otherwise, I" is non-redundant.

The non-redundancy condition is essentially a bookkeeping tool. If one adds report
elements ' which are dominated (strictly or otherwise) by another report 7, then any
time 7’ would be correct, an agent could safely report r instead. Hence, one could think
of imposing this condition then as simply “pre-processing” I" to remove any dominated
reports.

We extend the notion of an affine score to this setting, where the report space is R
instead of T itself. Note that A is still a subset of Aff() — R).

Definition 3.3. An affine score 2 : R — A elicits a property I' : T = R if for all t,

['(t) = argsup A(r)(t). (3.1)
reR
If we merely have I'(t) C argsup,cr A(r)(t), we say 2 weakly elicits I'. A property
T': 7T =R is elicitable if there exists some affine score 2 : R — A eliciting T".

As before, we need a notion of regularity — an affine score 2 is I'-regular if A(r)(t) <
oo always and A(r)(t) € R whenever r € T'(t). We define I'-regular linear and affine
families similarly.

The simplest way to come up with an elicitable property is to induce one from an affine
score. For any 20 : R — Aff(V — R), the property

Ly : t — argsup A(r)(¢) (3.2)
reR
is trivially elicited by 2.

Observe also that any affine score 2 eliciting I' gives rise to a truthful affine score
in the original sense — in fact, this is a version of the so-called revelation principle. For
each t let r; € T'(t) be a report choice for t; then the affine score A7 (#/)(t) = A(ry)(t) is
truthful. Moreover, by our choices of {r;}, we have

G(t) = sup A7 (') (t) = sup A(r)(t). (3.3)
veT reR

'The family {¢. € Lin(V — R)},er is T-regular if £,.(t) € R for all t € T, and £.(t') € RU {—oc}
for ' # T',.. Likewise for I'-regular affine functions.
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Of course, in general, 2A7 will not be strictly truthful, since by definition, any reports t, t”
with 7, = 7 will have A7 (¢) = A7 (). Thus we may think of a property as refining the
notion of strictness for a truthful affine score. The connection we will draw in Theorem 3.2
is that, in light of (3.3), a property I' therefore specifies the portions of the domain of T
where G must be “flat”.

To get at the connection between properties and “flatness”, we start with a technical
lemma which shows that having the same subgradient at two different points implies that
G is flat in between.

Lemma 3.1. Let G : conv(T) — R be convex with G(T) C R, and let d € OG, for some
teT. Then forallt' €T,

dedGy < G@It)—G({')=dt—-1).

Proof. First, the forward direction. Applying the subgradient inequality (2.2) at ¢’ for
dG; = d and at t for dGy = d, we have

from which the result follows (as G(t) and G(t') are finite).

For the converse, assume G(t) = G(t')+d(t—t") and let t”” € T be arbitrary. Note first
that d(t) € R as d € Gy, so d(t') € R as well. Then using the subgradient inequality 2.2
we have

Gt +dt" —t)=GHt")+d{t" —t)+d(t -1
G(t) +d(t" —t)
G

( //)’ D

We are now ready to state our characterization in this setting, which in essence says
that eliciting a property I' is equivalent to eliciting subgradients of a convex function G.

t
t

IN

Theorem 3.2. Let property I : T = R and I'-regular affine score 2 : R — A be given.
Then 2 elicits T if and only if there exists some convex G : conv(T) — R with G(T) C R,
and ¢ : R — 0G satisfying r € T'(t) <= ¢(r) € 0Gy, such that for all r € R and
teT,

Ar)(t) = G(tr) +(r)(t —tr), (3.4)

where {t, },cr C T satisfies v’ € T'(t,.) for all 1.

Proof. For the forward direction, assume that affine score 2 elicits I'. For each r, we may
extend RA(r) to all £ € conv(T) by linearity as in Theorem 2.1, whence we may define
G(t) = sup,cr 2(r)(%), which is finite for # € T as 2 is ['-regular. We wish to show that
the choice ¢ : r — 2y(r) suffices, where 2(, denotes the linear part of 2.
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By standard arguments (see e.g. [88, Prop. 8.12] and [5, §7]), the subgradients to a
convex function F : X — R at # € dom(F) are precisely the gradients of its affine supports
at x. More formally, let AS(F,z) = {a € Aff(X — R) |a(z) = F(z), Yo F(z) > a(x)}
be the set of affine supports of F' at z. Then for all x € dom(F') we have 0F, = {da|a €
AS(F,z)}.2

By definition of G, we have 2A(r)(f) > G(t) Vi € conv(T). Noting that 92(r); =
{¢(r)}, we have for all t € T and r € R,

re(t) < A(r)(t) = sup A(r')(¢)

r"ER
A(r)(t) = G(t)
A(r)(t) € AS(G, 1)

— ng(r) € 0Gy,

where we use elicitation in the first biconditional. Finally, using I'-regularity and the
definition of ¢,, we show the form (3.4):

G(tr) +RAe(r)(t — ) = A(r) (Er) + Ae(r) (¢ = tr) = A(r)(2).

For the converse, let G, ¢, and t, be given, and assume 2 has the form (3.4). First
note that by definition of {¢,},cr, and by assumption on ¢, we have ¢(r) € aGtr for all
r. We claim that G dominates 2(, meaning for all » € R and all t € T, G(t) > 2(r)(¢);
this follows from the definition of 20 and the subgradient inequality (2.2) applled to ¢(r)
at ¢.

Now by Lemma 3.1, we have

o(r) € 0Gy <= G(t) — G(t,) = p(r)(t —t,)
— G(t) =A(r)(¢). (3.5)
By definition of a property, we have for all ¢t € T that T'(t) # 0, so by the above G(t) =
2(r)(t) for some r. Combining this with the fact that G dominates 2, we have G(t) =

sup, A(r)(t) for all t € T. Putting this together with (3.5) and our assumption that
re(t) <= ¢(r) € 9G;, we have

rel(t) < Gt)=A(r)t) < re argsup 2A(r'") (t). O

As a corollary, we also obtain a better understanding of weak elicitation, which we will
need in the following sections.

*Briefly, the argument is as follows: £ € AAS(F,z) implies 3c,v F(z) = ¢+ {(z —v) and V2’ F(z') >
c+4(x' —v). Then F(z)+4(z' —x) = c+4(x —v) +£(z' — ) = c+L(z’ —v) < F(z') when F(z) < oo.
For the converse, take ¢ = F(z) and v = .
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Corollary 3.3. Let property I' : T = R and T'-regular affine score A : R — A be given.
Then A weakly elicits T if and only if 2 satisfies (3.4) with the weaker condition that
rel(t) = ¢(r) € 0G:.

Proof. Given any affine score 2, and defining 'y as in (3.2), we see that 2 weakly elicits I’
if and only if I'(¢) C T'y(t) for all . Now let 2 weakly elicit I". As 2 trivially elicits T'g(, we
apply Theorem 3.2 and now have in particular r € I'(t) = r € T'y(t) = ¢(r) € 0G.
For the converse, simply define 'y (t) = {r € R | p(r) € 0G}. By Theorem 3.2, A elicits
Iy, and by assumption we have I'(t) C T'y(t) for all ¢. O

Returning to the above discussion, by focusing on 27 instead of 2, we now see how
properties are essentially a refinement of strictness. Up to a remapping of R, A7 is strictly
truthful if and only if 2 elicits T : ¢ + {t}, and A7 is truthful if and only if 2 elicits some
I" such that t € T'(¢) for all 7. In fact, one can can formalize this using Corollary 3.3: a
affine score 2 is truthful if and only if it weakly elicits I' : ¢ — {¢}. Hence, Theorem 3.2
and Corollary 3.3 are actually a generalization of our main characterization, Theorem 2.1.

This new characterization sheds new light on the structure of elicitable properties. In
the scoring rules literature, it is common to assume strong conditions on I' and R, such as
I" being a function rather than a multivalued map, and T being linear [2] or real-valued [65];
we will address these specific cases in §3.5 and §3.4.2. In contrast, Theorem 3.2 allows for
an extremely general I' and R. While our resulting characterization is not as concrete or
constructive as those from the scoring rules literature (e.g. the set of elicitable properties is
only vacuously characterized), we nonetheless have a very powerful statement which may
be of use in particular classes of properties. We illustrate the power of this characterization
in the following sections.

3.2.1 The structure of properties

As we mention above, one may interpret Theorem 3.2 as saying that properties are es-
sentially selections of subgradients of a convex function. With a bit more work we can
formalize this statement.

Lemma 3.4. Let I', G, and ¢ be as in Theorem 3.2. If additionally ¢ is injective, then
the condition
VrVt rel(t) < ¢(r) € 0G; (3.6)

is equivalent to
ID C 9G s.t. ¥t o(I'(t)) = 0G, N D. (3.7)

Proof. It is easy to see that the first condition (3.6) is equivalent to V¢ I'(t) = {r : ¢(r) €
0Gy}. Letting D = p(R) C OG, we then easily have

p(L(t) = {p(r) : o(r) € 3Gt} = 0G; ND.

For the converse, we simply use injectivity of ¢ and the fact that ¢(R) C D by definition.
O
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Furthermore, it is easy to see that this ¢ must be injective if I is to be non-redundant
(see Definition 3.2).

Lemma 3.5. Let ', G, ¢ as in Theorem 3.2. If ¢ is not injective, I is redundant.

Proof. Suppose ¢(r) = ¢(r') for r # r’. By the condition (3.6), for any t we have
rel(t) < o(r) € 0Gy < ¢(r') € Gy < r' € I'(t). But then I';, =T/, and
I' is redundant. O

In fact, as we will see in §3.3.2, this is a consequence of the constant term in an
affine score being a function of the linear term only (specifically, the conjugate dual, G*).
Note that the converse does not hold: a property can be redundant but still have unique
subgradients for each report, as the following example illustrates.

Example 3.1. Let T =R, R = (—o0,—-1] U {0} U [1,00), and define:

{t—1} ift <0
[(t) =4 {-1,0,1} ift=0. (3.8)
{t+1}  ift>0

This T is redundant, sinceT'g =T'_1 =T'1 = {0}. As we shall see, however, T is elicitable;

tak
- A(r)(t) = 4" =0 (3.9)
- (r|=1)? ow. ' '

Then when t = 0, we easily see that argsup,.p A(r)(t) = {—1,0,1}. Fort > 0, by
symmetry r > 0 in the argsup, and by simple calculus we have argsup,cr 2A(r)(t) =
{t+1}. Similarly fort < 0. Hence, we have shown I'(t) = argsup,cr 2(r)(t) for all t, as
desired.

Where did this 2 come from? We simply applied Theorem 3.2 with G(t) = |t| +t?/2,
representatives t, = r —sgn(r), and ¢ simply being the identity®; see Figure 3.1. One can
check that r € T'(t,) always, that o(r) € 0G; <= r € I'(t), and that

A(r)(t) = G(tr) + o(r)(t - tr)
= |r —sgu(r)| + (r —sgu(r))* + r(t — r +sgn(r))

indeed matches (3.8).
Finally, observe that we could also elicit T' with G(t) = t2/2, t, = ¢(r) = r — sgn(r),

yielding:
1 1
A(r)(t) = t2/2 +t.(t — t,) = 5:52 -5t - t)2. (3.10)

Combining Lemmas 3.4 and 3.5 above with Theorem 3.2, we now have the following
theorem, which explicitly shows how an elicitable T" is simply a remapping of (a selection
of) subgradients of some convex function.

3Strictly speaking, we should write (1) = (t — 7 - t).
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Figure 3.1: The I (left) and G (right) from Example 3.1.

Theorem 3.6. Non-redundant I : T = R is elicitable if and only if exists there some
convex G : conv(T) — R with G(T) C R, some D C 0G, and some invertible ¢ : R — D
such that T'(t) = o~ Y (D N OGY).

Note that as discussed earlier the assumption of non-redundancy here is merely a book-
keeping concern — of course one can arbitrarily add report elements which are dominated
by another (though possibly not strictly), and these cannot be recovered just given the
consumer surplus function GG. One could even add several copies of the same report, or
equivalently, add redundant subgradients at the same point. By imposing non-redundancy
we are simply “pre-processing” I' to remove dominated reports.

A very important question, and one which would give stronger characterizations, is the
following:

Question 3.1. Given non-redundant elicitable I', what are all pairs G, D such that there
exists some bijection y satisfying Theorem 3.67

In essence, this question is getting at the fundamental structure of subgradient level
sets for convex functions. In §3.4.1 we will see that there is a lot of structure in the
finite case, where |R| < oo. In the general case, certainly performing a homothet of the
subgradients of G (i.e. scaling G and adding a linear term), will preserve the elicitation
structure. However, surely more can be done — the property in Example 3.1 was initially
elicited with consumer surplus G(t) = [t|+t2/2, and later with G(t) = ¢2/2 as well, which
is not a homothet transformation.

To illustrate the power of our characterizations, we show some characteristics of general
elicitable properties.
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Convexity

A well-known property of subgradient mappings is that their level sets are convex.

Proposition 3.7. For any convex function G, the set 0G~1(d) = {x € dom(G) : d €
0G,} is convex.

Proof. Let x, 2’ € OG~1(d); then one easily shows (cf. Lemma 3.1) that G(z) — G(2') =
d(z —2'). Now let & = ax + (1 — a)z’; we have,

G(2) < aG(z) + (1 — a)G(2) (3.11)

=d(z—2")+ G (3.12)
< G(2), (3.13)

where we applied convexity of G in (3.11) and the subgradient inequality for d at 2’
in (3.13). Hence, by eq. (3.12) we have shown G(z)—G(z') = d(Z—2'), so by Lemma 3.1,
d € 0G;. ]

In light of our characterizations, this fact about convex functions immediately applies
to elicitable properties:

Corollary 3.8. IfI": T == R is elicitable, then I, is convex for all r.

To see this, just note that ¢(r) € Gy N Gy implies that ¢(r) € 9G; for all £ =
at + (1 — a)t’. Corollary 3.8 generalizes a similar result for scoring rules from Lambert et
al. [65] to affine scores.

Cardinality

Combining Theorem 3.2 with the fact that finite-dimensional convex functions are differ-
entiable almost everywhere (cf. [5, Thm 7.26]) yields the following corollary, which shows
that elicitable properties have unique values almost everywhere. Note that in some cases
this holds in infinite-dimensional vector spaces as well; see e.g. [24, p. 195] and [5, p.
274].

Corollary 3.9. Let T' : T = R be an elicitable property with T CV = R". If T is of
positive measure in conv(7T), and I' is non-redundant, then |I'(t)| = 1 almost everywhere.
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3.3 Duality in elicitation

In the previous section, we took Theorem 3.2 and delved deeper into its conditions, showing
that in a strong sense I is like a subgradient mapping of a convex function. We now delve
even deeper, to the very core of elicitation, and out the other side. The first step is
removing the word “like” from the sentence above — we must look at properties which
are subgradient mappings.

3.3.1 Direct elicitation

Now that we have formalized the relationship between the report space and subgradients
of convex functions, we can see what the ‘“canonical” properties look like: those which
are (subsets of) subgradient mappings of a convex function. For these properties, we can
talk about direct elicitation, which roughly speaking means removing the “middle man”
 between R and 9G. In fact, for such “canonical” properties, we can even talk about a
convex function itself eliciting T".

Definition 3.4. A property I' : T = D, where T CV and D C V* = Lin(V — R),
is directly elicitable if there exists G : conv(7) — R convex with G(T) C R such that
I'(t) € OGy. In this case we say G directly elicits, or just elicits, T.

In other words, G elicits I : 7 =2 D if the ¢ in Theorems 3.2 and 3.6 is the identity.
Of course, it remains to be shown that there exists an affine score eliciting such a property,
but the proof is trivial.

Proposition 3.10. Directly elicitable properties are elicitable.

Proof. Let T': T = R and G : T — R convex with G(7) C R be given such that
I['(t) € 0G;. Then taking D = R and ¢ = idp, we have by Theorem 3.6 that T is
elicitable. O

Note that this direct elicitability in no way necessary for elicitability, since the report
space is not required to have any intrinsic meaning. For example, one can take I'(t) =
—0G, for some G, which will not be directly elicitable, but still elicitable with p(r) = —r
and G.

The notion of direct elicitation is often useful for generating intuitive examples, since
the report space itself has meaning. In fact, given any convex function GG, the property
I'(t) = 0G, is directly elicitable by G. This is in fact how Example 3.1 was generated,
specifically equation (3.8), though at t = 0 we selected {—1,0,1} instead of the full
subgradient set 0Gp = [—1, 1].

As a final remark, we note a few observations about direct elicitation. One first notices
that the G eliciting some I is not unique, as G’ = G + ¢ will also elicit T" for any constant
c. But these are the only convex functions directly eliciting I'. Moreover, recovering such
a G from T is easy: simply integrate (a selection of) I" to obtain G. Testing whether T" is
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directly elicitable is less straight-forward, but there are a variety of monotonicity conditions
addressing this issue as well; see Section 5.1.1.

3.3.2 Report duality

We are now ready to hold up a mirror to properties and their scores, and see what we find.
That is, we introduce notions of duality. As we will see, there are actually two mirrors,
yielding four combinations of dualities (see Table 3.1). In this subsection we will explore
the first, flipping the report from the type to the dual type.

For now, we will take our dual vector space to be all linear functions from V to R (not
R as above), but in §3.3.3 we will further require d — d(v) to be linear for all v € V.* We
begin with the fundamental object of convex duality, the convex conjugate.

Definition 3.5. Let V* = Lin(V — R). The convex conjugate of G : V — R, denoted
G*: V* = R, is given by
G*(d) = sup d(v) — G(v). (3.14)
veVY
The power of the conjugate, even in this very general setting, is apparent after the
following lemma, which says roughly that the convex conjugate “encodes” the subgradients
of G. This is a classical result in convex analysis (cf. [95, Thm E.1.4.1]), and we will use
it throughout the next two chapters.

Lemma 3.11. Let G :V — R be convex. Then for allv € V,d € V*,
G*(d) =d(v) — Gv) <= de€ 0G,.
Proof. We can simply break down the conditions step by step:

G*(d) =d(v) —G(v) <= v e al;ggtjlp d(v') — G
— W eV, dv) - G) >dX) - G[)

— W eV, GU)>GW)+d —v),
where in the last step we merely negated and added d(v’) € R to both sides. O
Lemmas 3.4, 3.5, and 3.11 let us further simplify Theorem 3.2, as follows.

Theorem 3.12. Let non-redundant property I' : T = R and I'-regular affine score 2 :
R — A be given. Then 2 elicits T if and only if there exists some convex G : conv(T ) — R,
and bijective ¢ : R — D with D C 0G satisfying o(I'(t)) C dGy, such that for all r € R
andt e T,

Ar)(t) = @(r)(t) = G (p(r)). (3.13)

*When the dual space can take on infinite values, the conjugate is not always well-defined, as values
of the form oo — oo are encountered.
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We can now see that there are in fact “canonical scores” as well: every directly elicitable
I': T = Dis elicited by some 2P (d)(t) = (t,d) — G*(d), and moreover any I': T = R
with D and ¢ is elicited (only) by scores 24(r)(t) = AP (p(r))(t). In other words, properties
are in a very literal sense just subsets of subderivative mappings, up to some bijection (or
link function) taking them to some other report space R.

Dual-report mechanisms and the taxation principle. The notion of a dual-report
mechanism is already well-known as a consequence of the taxation principle — instead
of asking the agent for her type, one could simply ask the agent directly for the desired
allocation, posting a menu prices (or “taxes”) for each. This is without loss of generality
because a mechanism’s prices cannot depend on the agent's type except through the chosen
allocation. In our notation, each allocation d is listed with its price G*(d). It is worth
noting however that this is not always identical to the original mechanism. Specifically,
while the equilibrium payoffs for the posted-price mechanism 2A(d)(¢) are the same as
those of the direct revelation mechanism 2((¢')(t), the off-equilibrium payoffs need not be
equivalent, as the posted-price mechanism may allow reports d € 0G; which are not dGy
for any t. In other words, because the primal-report (i.e., direct) mechanism must choose
a single subgradient dG for every point, if {dG¢}7 C G = D, the dual-report mechanism
can be strictly more expressive. We can see this discrepancy in Example 3.1, since there
are three report choices r € {—1,0,1} that could correspond to type ¢ = 0, and each
yields a different affine function of ¢ not expressible by any other type t'.

Dual-report scoring rules and prediction markets. As we will see in §4.2, the notion
of report duality exactly captures the relationship between scoring rules and prediction
markets. Here the scoring rules have the primal report space, and prediction markets the
dual, where the optimal share bundle is essentially a subgradient of the scoring rule at the
trader’s belief. There we will further discuss conditions for which the duality can be run in
reverse without loss of generality, but as mentioned above about mechanisms, in general
the “menu” format (dual report) of an affine score can be strictly more expressive than
the type format (primal report).

3.3.3 Type duality and the duality quadrangle

Beyond dual report spaces, we now explore a less familiar notion of duality, defining dual
properties and their scores, where we completely swap the roles of types and reports. This
is the second “mirror,” and with both in hand now we have a full four combinations of
dual report and type, which we call the duality quadrangle; see Table 3.1.

To start, we need a dual vector space with more structure than simply Lin(V — R).
For this we use the notion of a dual pair, which is a standard setting for convex analysis
in infinite-dimensional spaces.
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Definition 3.6 ([5, §5.14]). A pair of topological vector spaces (V,V*) is a dual pair if it
is equipped with a bilinear form (-,-) : V x V* — R which separates points, in the sense
that Yv* (v,-) =0 implies v = 0 and Yv (-,v*) = 0 implies v* = 0.

Note that the above assumption that (V,V*) is a dual pair implies in particular that
for all v* € V*, the map v* +— (v,v*) is linear. This will be crucial when interpreting
R C V* as the type space, since affine scores must be affine in the type. Note that as
R is Hausdorff, V together with the product topology inherited from the dual pair is also
Hausdorff and locally convex; see [5, §7| for details. For the remainder of this section
(§3.3) we will assume that we have a dual pair (V, V*).

A subject that will come up many times in this section, and even more in Chapter 4,
is the conditions under which we have G** = (G*)* = G. That is, when is the conjugacy
operator an involution? Fortunately, in the setting of dual pairs, this has been thoroughly
studied in convex analysis. We state the classic theorem due to Fenchel and Moreau [59,
62, 100], which will be useful throughout.

Definition 3.7. A function f : X — R is lower semi-continuous (l.s.c.) if for every x¢ in
dom(f) it holds that lirginff(x) > f(zo).
T—x0

Theorem 3.13 (Fenchel-Moreau). Let X be a Hausdorff locally convex space. For any
function G : X — R, it follows that G = G** if and only if one of the following is true

(i) G is a proper, l.s.c., and convex function
(i) G = +oo, or
(iii) G = —o0.

The following corollary will prove very helpful in our discussion of type duality below,
as well as in Chapter 4. The proof follows from applying Theorem 3.13 (recall that dual
pairs are automatically Hausdorff and locally convex), and then Lemma 3.11 twice, once
for G and once for G*.

Corollary 3.14. If G is convex, proper, and |.s.c., then v* € 0G, <= v € 0Gj..

We now introduce the concept of a dual property I'*, which essentially swaps the type
and the report. That is, an agent has a “true report” r and I'*(r) encodes all the “correct
types” t. We then go on to show the relationship between the direct elicitability of dual
properties. See below for possible interpretations of dual properties.

Definition 3.8. LetT': 7 = R where R C V*. Then the dual of ', writtenT™* : R = T,
is defined by T* =T~1. In other words, T'* satisfies r € T'(t) <= t € T*(r).

Theorem 3.15. For dual pair (V,V*), let ' : T = D be given with T CV and D C V*.
Let convex proper and l.s.c. G be given. Then G elicits I if and only if G* elicits T'*.
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Proof. We apply Corollary 3.14 to obtain d € 0G; <= t € 0G}. If G directly elicits I',
then we have

tel™(d) <= del(t) < decidG, < tec Gy,

so G* directly elicits I'*. Clearly the above may be applied in the reverse direction as well,
yielding the result. O

Let us look deeper into Theorem 3.15. Note that when G and G* elicit I" and I'*,
respectively, we have by the above discussion that A(d)(t) = (¢t,d) — G*(d) elicits I" and
A*(t)(d) = (t,dy — G(t) elicits I'*. Moreover, the "consumer surplus” functions of 2 and
2A* are G and G*, respectively. This curious relationship, combined with the notion of
report duality, can be visualized as shown in Table 3.1. Note that traveling around the
table does not necessarily mean arriving at the same choice of GG, nor does it imply that
G** = (. However, when G** = G does hold, the diagram “commutes” in a certain
sense.

Type
Primal Dual
E A(t")(t) A (') (d)
S| G+t —tdCy) W dy — Gt
| _ A(d)(1) A (d')(d)
- 4 d) — G (d) G*(d) + (dG?,, d — d')
sup A() () = G(1) sup A*(-)(d) = G*(d)

Table 3.1: The duality quadrangle.

The implications of these dualities, and in particular of type duality, are not yet fully
clear. In the following paragraphs we explore various identities and ideas that naturally
arise, but leave the rest to future work.
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Identities

Table 3.1 shows that the theory of elicitation inherits a lot of structure from convex duality.
Ignoring boundary and regulatory concerns for the moment, we obtain some nice identities:

A(d)(t) + A*(£)(d) > (t,d) (3.16)
A(d)(t) — A*(£)(d) = G(t) — G*(d). (3.17)

The first follows from the classic Fenchel-Young inequality [89], the proof of which for G
proper follows directly from the definition of the conjugate (Definition 3.5).

Lemma 3.16 (Fenchel-Young inequality). Y v € V, v* € V*, G(v) + G*(v*) > (v,v*).

The elicitation game

Define a two-player game M (d, t), with row strategies d € D and column strategies t € T,
as

M(d,t) = (m(d)(t), Q(*(t)(d)) - ( (t,d) — G*(d), (t,d) — G(t)). (3.18)

One could think of the column player as choosing the agent's type, and the row player
as choosing the principal’s “allocation.” Interestingly, this interpretation implies that the
row is the agent and the column is the principal (they each choose each other's “type”).
Immediately one realizes that the Nash equilibria of this elicitation game M are exactly
the set of dual-optimal points (d,t) such that d € 0G; and t € 0G};. Moreover, the
equilibrium payoffs for the Nash (d,t) are (G(t),G*(d)).

It is interesting to note the mixed strategies of this game: if d ~ Pp and t ~ Pr
independently, the payoffs are

M(Pp, Pr) = ((£,d) — Ep,[G*(d)], (£.d) — Ep, [G(1)]), (3.19)
and if (d,t) ~ P is supported only on dual points,

Ep[M(d,t)] = (Ep|, [G()], Epp,[G7(d)]), (3.20)
both of which bear resemblance to quantities in Bayesian or randomized mechanism set-
tings.

Score divergences

The score divergence (t)(t) — A(¢')(t) is a natural notion of “regret” which arises fre-
quently in the scoring rules literature (cf. [51]). Our score divergence, as we define below,
is reminiscent of a Bregman divergence, a fact we explore further in §4.2.1.

D¢ ac(t, ') = A(t)(t) — At )(t) = G(t) — G(t') — (t = ', dGy) . (3.21)
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Note that the first argument to D is the true type, as opposed to our 2l notation. Also
note the subscripts to D, which specify both the convex function G and a selection of
subgradients. A Bregman divergence requires G to be continuously differentiable, but our
definition (3.21) is a natural extension, and has been studied before (cf. [60]). We also
use this general notion in Definition 4.1.

Score divergences have many nice properties, like convexity in the first argument,
and (directional) differentiability at ¢’ = ¢; see Proposition 3.19. Score divergences also
enable reasoning about the magnitude of off-equilibrium payoffs, which can be important
in practice, when externalities are often present. For example, Fiat et al. [45] introduce the
notion of “strong truthfulness”, where the payoff decays as ||t —||?, to design mechanisms
that are robust even when agents care about the utility of other agents.

Turning to our various notions of duality, the following are four divergences corre-
sponding to the duality quadrangle, starting in the (primal,primal) setting and moving
counter-clockwise.

D¢ ac(t,t') = G(t) — G(t') — (t —t',dGy) (3.22)
Dg(t,d) = G(t)+ G* ( = (t,d") (3.23)
D ac(d, d) = G*(d) = G*(d) = (dGy,d - d') (3.24)
Da-(d,t') = G*(d) + G(t') — (¢, d). (3.25)

Amazingly, we see that D¢(t,d) = Dg-(d,t) for all t,d (not just dual points). In other
words, the loss of reporting d in the primal but having type t is the same as reporting ¢
in the dual but having “type” d. In the context of the elicitation game above, this means
that at any pure strategy pair, both players have the same regret, so they both stand to
gain the same amount in a best response (though a simultaneous best response will not
lead to an equilibrium point in general).

Dual scoring rules

The notion of a dual scoring rule is relatively straightforward. The agent is endowed with

a private lottery ticket ¢ : O — R which specifies her winnings upon each state of the

world O. A principal who would like to know the agent’s lottery ticket offers her a scoring

mechanism &*(¢', q) = E,(4[q] which selects a distribution p(q’) based on the report ¢'.

That is, the mechanism selects p, the odds for the gamble, based on the reported ticket

q'. Truthfulness implies that this must be done in a way to maximize the winnings for ¢'.
To make this slightly more concrete, let us take the dual of the scoring rule

6(1?/, 0) = G(p/) + de/(O) — E, [de/] = de/(O) — G*(de/)
Then the dual would be

S*(¢',q) = G*(¢) +dG}(q — ¢') = Epgyla] — G(p(q)),
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where p(q’) = dG;, € P. Thus, the "menu” format of the affine score would be a list
of probability distributions p with prices G(p), where G is the consumer surplus from the
original scoring rule. Note that as p € P, the mechanism cannot enforce strict truthfulness
between g and g+ al. To get around this, the principal might add a new outcome with a
known payout, i.e. set O’ = O U {0’} and offer to pay the agent $1 if o’ materializes, and
modify the menu above to contain entries p’ € A(O’). Intuitively, the agent's preferences
between the existing lottery ticket and the new payout opportunity reveal the “scale” (in
an arithmetic sense) of the agent's original gamble.
As a simple example, one can take G(p) = —H (p) where

Hp) = — /O p(0) log p(0) di(o)

is Shannon entropy (see Chapter 4). In this case, the primal scoring rule is just the
logarithmic scoring rule S(p,0) = logp(o). Phrased in dual report format, the dual
scoring rule is simply,

&"(p,q) = Eplq] + H(p) = Eplg — log p]
where the optimal odds for g are the familiar exponential weights,

_ exp(q(o))
Jo exp(q(0))dv (o)’

p(g)(0) = V(-H)"(q)

Dual mechanisms

Less straightforward than a dual scoring rule, the idea of a dual mechanism is nonetheless
intriguing, where essentially the roles of the principal and agent in mechanism design are
reversed. Here the agent devises some score 21* : D — Aff(D — R) where D = {Eval, :
o € O} and the range of 2* is {Eval, — Eval,[t] : t € T}. Equivalently, and much more
straightforwardly, we can write 24* : O — T. Thus the principal reports an allocation
o' € O, and the mechanism produces a type t° = 2A*(0") based on this report, and finally
the principal receives utility t"/(o) for the “true allocation” o.

A possible interpretation is that the principal reports what “object” she has in her
hands, the “allocation”, and the agent chooses his type; the pricipal’s payoff is then the
valuation of the agent’s chosen type on the true allocation. Note that as always, the roles
of revenue and consumer surplus are swapped, in exactly the way one would think — the
net utility of the agent in both cases is G(t), and that of the principal in both cases is
G*(d).

3.3.4 Rationalizability

Since Rochet [86] or earlier, it has been observed that the design of truthful mechanisms is
similar to the rationalizability problem, which is the following. Given some purchase data
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D = (2%, p%), where 2 € R" is the ith bundle of goods and p’ € R" is the ith price vector,
is D consistent with a concave utility function (which is quasi-linear in money)? In other
words, does there exist concave u : R™ — R such that for all 4

z' € argmax{u(z) —p' -z |z € X(p)}, (3.26)

where one usually takes X (p) = {x € R" | p-z < B}. We will take X(p) = X for the
remainder, though this can perhaps be relaxed.

We can make this connection more formal by swapping the roles of the utility and the
cost. That is, letting p be the "type’, we immediately see that the net utility is affine
in p, so we can view this as an affine score. Specifically, letting I'(p) C X be the set of
bundles that the agent buys given prices p, we have that u rationalizes ' (which encodes
D) if and only if 2(x)(p) = u(x) — p - z elicits I.

Note that if we interpret this this affine score as a mechanism, the valuation vector
is t = —p, meaning agent's utility is actually ¢t - x = —p - x, whereas the payment to
the mechanism is —u(x). Thus, the consumer surplus function of the mechanism is the
conjugate dual of the (negative) utility function, since G(t) = sup,ex{t -z —(—u)(x)} =
(—u)*(t).

There is certainly duality involved in this conversion between rationalizability and mech-
anism design, and it is natural to ask how this fits with the various notions of dual-
ity discussed above. In both rationalizability and mechanism design, the agent is given
prices/type p = —t, and must choose a bundle/report . In terms of the duality quad-
rangle in Table 3.1, these settings are still in the left-hand side (primal type), specifically
the lower left (dual report), though one could argue that the mechanism is the top left
(primal report). Thus, the real duality in rationalizability is in taking an affine score
2(d)(t) = d(t) — G*(d) and thinking of the d(¢) term as the cost and the —G*(d) term
as the utility, rather than the other way around as is typical for mechanism design.

3.4 Characterizations for special cases

We now examine specific classes of properties, using the additional structure to provide
stronger characterizations. As discussed in §3.1, the previous work in these areas lies almost
entirely in the scoring rules domain, where a property is often interpreted as a statistic of
a distribution. Our goal will be to extend these results to our much more general setting,
both to uncover their deeper mathematical structure and to allow their extention to other
elicitation domains; see for example the discussion on properties in mechanism design in
§5.2.

The two classes we consider are finite-valued properties, where R is a finite set of
possible reports, and functional properties, where the multivalued map I : 7 = R is
actually a function I : 7 — R specifying a unique correct report for each t € 7. The
latter case we will further break down into the linear case in §3.4.2, where R is a vector
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space and I is a linear map, and the general nonlinear case in §3.4.3, where we will be
forced to make further differentiability assumptions to make headway.

3.4.1 Finite-valued properties

We first consider the case where R is a finite set of reports. In the scoring rules literature,
Lambert and Shoham [66] view this case as eliciting answers to multiple-choice questions.
There are also natural applications to mechanism design, which we mention in §5.2.

Our approach is heavily inspired by Lambert and Shoham [66]. Assume throughout
that R is finite and that 7 is a convex subset of a vector space V endowed with an inner
product, so that we may write (¢, ') and in particular ||t|> = (t, t). In this more geometrical
setting, we will use the concept of a power diagram from computational geometry.

Definition 3.9. Given a set of points P = {p;}!"y C V, called sites, and weights w € R™,
a power diagram D(P,w) is a collection of cells cell(p;) C T defined by

CeHP,w(pi) = {t eT

i € argmin {Ilp; —tI* — w;} } . (3.27)
J

The following result is a generalization of Theorem 4.1 of Lambert, et al. [66], and is
essentially a restatement of results due to Aurenhammer [11, 9].

Theorem 3.17. A property I' : T = R for finite R is elicitable if and only if the level sets
{T';}rer form a power diagram D(P,w).

Proof. Let us examine the condition that ¢ is an element of cellp,(p;) for some power
diagram D(P,w):

t € cellpy(p;) <= i€ argmin {||p; —t||* — w;}
J
= i€ argmin{\\pj\\z —2(pj,t) —w;}. (3.28)
j

Note that eq. (3.28) is affine in . Now given some D = D(P,w) with index set R,
we simply let 2A(r)(t) = 2{(p,,t) + w, — [[p-||*>. By (3.28) we immediately have r €
argsup,, A(r')(t) <= t € cellp,(py), as desired.

Conversely, let an affine score 2 eliciting I' be given. Note that since we are in an
inner product space, we may write A(r)(t) = (z,,t) + ¢, for x, € V and ¢, € R. Letting
pr = /2 and w, = ||p;||? + ¢, we see by (3.28) again that ', = cell(p,.) of the diagram
D({py},w). Hence, I is a power diagram. O

We have now seen exactly what kinds of finite-valued properties are elicitable, but how
can we elicit them? Or more precisely, as the proof above is constructive enough to give
sufficient conditions, what are all ways of eliciting a given power-diagram? In general, it
is difficult to provide a “closed form” answer to this question, so we restrict to the simple
case, where essentially the cells of a power diagram are as constrained as possible.
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Definition 3.10 ([10]). A j-polyhedron is the intersection of dimension j of a finite number
of closed halfspaces of V, where 0 < j < dim(V) < oo . Acell complex C inV is a covering
of V by finitely many j-polyhedra, called j-faces of C, whose (relative) interiors are disjoint
and whose non-empty intersections are faces of C'. C is called simple if each of its j-faces
is in the closure of exactly (d — j + 1) d-faces (cells).

Theorem 3.18. Let finite-valued, elicitable, simple property I' : T = R be given. Then
there exist points {p,}r C V such that an affine score 2 : R — A elicits T if and only if
there exist a > 0, and pg € V such that

A(r)(t) = 2 {apr + po, t) — llapr + pol* + wr, (3.29)
where the choice w € R™ is determined by a and py.

Proof. A result of Aurenhammer for simple cell complexes, given in Lemma 1 of [9] and
the proof of Lemma 4 of [11], states the following: given sites P and P’ and weights w,
there exist weights w’ such that D(P’,w’) = D(P,w) if and only if P’ is a homothet
(translated and positively scaled copy) of P. We simply apply this fact to the proof of
Theorem 3.17. O

Image credit: Pooran Memari

Figure 3.2: A consumer surplus function G and its corresponding partition of the type
space, I'. The proof of Theorem 3.17 leverages the fundamental relationship between
projections of convex functions and power diagrams.

We conclude our exploration of finite-valued properties with a few remarks.
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Bregman Voronoi digrams and the role of ||-||[>. The squared norm seems fundamental
to our derivation above; let us dig further to see if this is indeed the case. Observe that
the form (3.29) is simply

A(r)(8) = 2ty 1) — [lte]* + wr,

where ¢, = ap, + pg. Consider the case where w, = 0 for all r, which corresponds to
I" being a Vooronoi diagram. In this case, could think of 2l as being a special case of the
“Brier score” AB(')(t) = 2 (t,'t) —||t'||?, so that A(r)(t) = AL (t,)(t). In other words, we
can think of our finite-report case as just restricting the allowed reports in a general direct-
revelation affine score. Note that the score divergence for A is just Dg(t',t) = ||t — |2,
where G(t) = |t||? is just the square norm.

This raises the following interesting question: what do we get when we replace G = ||-||
with another convex function on 7T, and restrict the reports from 7 to just a few points
{t,}r? Thatis, take A% (t')(t) = G(t') —dGy(t—t') and set A(r)(t) = AC(t,)(t). Surely,
for any such G, whatever I is elicited by such a modified affine score would have to be a
diagram by Theorem 3.17. But then why does the squared norm seem so fundamental?

As it happens, we are touching on precisely the notion of a Bregman Voronoi dia-
gram, introduced by Nielsen et al. [23, §4]. There, instead of defining cell; = {t : i €
argmin; ||t; — t[|}, the squared norm is replaced by any Bregman divergence D¢, so that
cell; = {t : i € argmin; Dg(t,t;)}.> Our conclusion that such diagrams coincide with
power diagrams corresponds to their Theorem 8.

Framed in terms of our report duality from §3.3.2, we can see this yet another way.
We can rewrite the Bregman Voronoi cell as

cell; = {t i € argmax G(t;) — dGy,(t — tj)} . (3.30)
J

By Lemma 3.11, this can in turn be written

cell; = {t :i € argmax (tj,t) — G*(fj)} , (3.31)
J

where t~j = thj. Hence, for any convex function G, the sites {pj} and weights w of

a power diagram corresponding to the Dg Bregman Voronoi diagram with sites {t;} are

given by p; = 3dGy; and w; = 1||dGy,||* — G*(dGy,)).

Degrees of freedom. It is interesting to ask what the degree of freedom is when choosing
an affine score to elicit a given property I'. Note that we have a trivial upper bound of
(d+1) - |R|, where d = dim(V), since one at most chooses a site and weight for each
cell. Theorem 3.18 makes it clear that in the simple case, the degree of freedom is actually

®In [23], three types of diagrams are introduced; here we refer to the first type.
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bounded by d4 1. In other words, one can specify the affine score with no more than d+1
real numbers, no matter the size of R.%

What about outside the simple case — are there cases when we are more or less
restricted? In fact, it is easy to come up with examples where we have much more
flexibility.

Example 3.2. The simplest example of a property whose degree of freedom scales with R
is the “collinear” property, I'(t) = | (t,x)| for some fixed x, where |y| denotes the greatest
integer less than or equal to y (the floor function). In a single dimension, this becomes
simply I'(t) = |t], let us take T = [1,N +1) and R = [N] ={1,2,...,N}. Toelicit T,
we must choose A(r)(t) = a,t+c, to satisfy the constraints a1 (r+1)+c¢,41 = ar—+c,
and a1 > «ap for all r € N. Picking an arbitrary oy and ¢y, we see that this still leaves
one degree of freedom between ao and ca, and so on each time we make a choice. Thus
we may choose {a, }, to be any increasing sequence, and the initial offset c;, for a total
of N+ 1 = |R| + 1 degrees of freedom. It is easy to see that in d dimensions, this
example gives |R|+ d; pick an initial slope and offset (d+ 1) and slope for each additional
hyperplane (1 each, for a total of |R| — 1, since the boundaries must be maintained).

In the context of scoring rules, Lambert [63] notes that given a finite property I, there
exists some set of base scores {b;} such that any scoring rule which is truthful for I" can be
written as a linear combination ) a;b;. It is not shown, however, how many base scores
there are for a given I', and hence the degree of freedom for specifying a score is unclear.
We conjecture that the collinear case described above provides the most flexibility, so that
the degree of freedom for any I is bounded by d + |R|.

Computing elicitability. It is natural to ask, given a property I', can we determine
whether T is elicitable in polynomial time? By Theorem 3.17, we need only test whether
the cells C = {T', },er form a power diagram. For the simple case, Aurenhammer gives
an algorithm for this task, given as “Algorithm Orthogonal Dual” in §2.2 of [10] and
comments thereafter. The orthogonal dual algorithm assumes that the cells are stored in
an incidence lattice, with nodes for each face of C, and edges when faces are incident
(a j-dimensional face which contains a (j — 1)-dimensional face). The runtime of the
algorithm is O(m), where m is the number of facets (faces of dimension d — 1).

More generally, Rybnikov in [90, §12] presents a polynomial-time algorithm which can
detect power diagrams in the general case. His work extends to manifolds even beyond
convex polytopes (the projections of which yield power diagrams — see Figure 3.2). We
will apply this algorithm to mechanism design in §5.2.

®The upper bound comes from the fact that two representations may give equivalent scores.



54
3.4.2 Linear properties

A natural class of properties are those which specify a unique correct report for each type.
In other words, properties I which are functions from 7T to R. This case has been studied
extensively in the scoring rules literature, and we explore how to extend these results to our
setting. In particular, this section focuses on the case that I' : 7 — R is a linear function,
in the algebraic sense. That is, for all « € R and all t1,t2 € T such that at; +t3 € T,
we have I'(at) + t2) = al'(t1) + I'(t2).

The setting where types are distributions 7 C A(O) has been studied in both machine
learning and in the scoring rules literature. In that case, I' can be thought of as the
mean of a random variable. We will address this case in much greater detail in Chapter 4,
and discuss previous work in §4.1.2. We find that even in the distribution case, our
characterization is more general than those currently in the literature due to our lack of
differentiability requirements or other major technical conditions.

Here we merely assume R is itself a subset of a topological vector space, and T is
continuous (and linear). Since I' is a function, throughout this subsection (and the next)
we will use the notation I : 7 — R and write r = I'(¢). We will only consider real-valued
affine scores, i.e. A = Aff(V — R), though in principle this restriction could be relaxed to
the extended reals as above. We will also assume throughout that 7 and R are convex.

As before, our goal is to characterize all elicitable I in this setting, and all affine scores
(weakly) eliciting a given I'. The first question turns out to be quite simple: any linear
map I is elicitable, by taking the following affine score:

A (t) = G(r) + dG(T(t) — 1), (3.32)

where G : R — R is convex. To see this, consider # = I'(t) to be the type, and invoke
Theorem 2.1. We thus turn to the second question: what forms of 2 other than (3.32)
weakly elicit I'?

To answer this question, we will capitalize on a subtle but important property of
truthful affine scores: locally around a point ¢, the score (-)(¢) is “smooth.” That is, the
optimization for an agent, sup, 2A(t')(¢), is well-behaved for ¢’ sufficiently close to ¢. To
formalize this statement, we define the directional derivative.

Definition 3.11. Let f : T — R, and for allt € T and v € V define

Ft0) — tg T ) = 1)

el0 €

(3.33)

to be the directional derivative of f at t in direction v.

We can now be more precise in describing the behavior of an affine score near the
“diagonal”: the directional derivative 2((¢;¢' —¢)(t) is 0. Note that our compact notation
here is just stating f(¢;¢' —t) =0 for f(-) = A(-)(1).
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Proposition 3.19. Let 2 : T — A be a truthful affine score, where T is convex and
A C Aff(V — R). Then for all t,t' € T the directional derivative 2(t;t' —t)(t) exists and
is equal to 0.

Proof. By Theorem 2.1, we have some convex function G : 7 — R, and some selection
of subgradients {dG;}¢c7, such that

At (t) = G(t') + dGy (t — t). (3.34)

Fix t,t' € T, and define g : R — R by g(z) = G(t + x(t' — t)). Then we have (¢t +
x(t" —1))(t) = g(z) — dg.(x) where one can check that dg, = dGy ) is indeed a
subgradient to g. Now we have

At~ )(0) =l O ZRO0 (3.35)
_ i 9(6) — dge(e) — 9(0)
el0 €

= g+(0) — hmdg67

where ¢/ (x) is the right derivative of g at =. It is clear that dg, < ¢/, () for all z, and
we have from [89, Theorem 24.1] that ¢ (z) < ¢/, (x + €) and limjo ¢, (z + €) = ¢/ (x).
Combining these we see that lim¢|g dge = ¢/, (¢). Hence we have (t;¢' —t)(t) = 0 as
desired. O

We can now use the revelation principle to apply Proposition 3.19 to our linear property
setting. Note that linearity of T is key here; without it, passing from T'(t + €(t' — t)) to
7+ €(r’ — r) would introduce error terms which may not be well-behaved in general.

Corollary 3.20. Let 2 : R — A be given which weakly elicits a linear property I, where
A C Aff(V — R) and R and T are convex. Then for all t € T and r = I'(t), and all
" € R, we have A(r;r’ —r)(t) = 0.

Proof. The affine score 27 (t')(t) = A(T'('))(t) is truthful because A is (this is the “rev-
elation principle”), and hence we may apply Proposition 3.19 to AT, For any t' € T,

m7@+eW—¢»@)—ﬂT@xw

A(T(e+ et = 1)) (1) - 2(r®) ()
)-

A(r + e(r’ — r))(t

0= (t;¢ —t)(t) = li
(8¢ = )(t) = lim

= lim
€l0

= lim
€l0

= A(r;r" —r)(t). O
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We are getting closer to our goal of understanding affine scores for linear properties.
Our next step will be to show that we may extend 2 outside of T along level sets of T'.
Note that « here is not just in the unit interval, but on the whole real line — we are saying
that 2L is still truthful even on linear extensions of level sets of I'.

Lemma 3.21. Let A : R — A be given which weakly elicits a linear property T : T = R,
where A C Aff(V — R). Then A weakly elicits I' on expanded type space T = {at+ (1 —
a)t' caeR, Ire Rttt €}

Proof. Let r,r' € R, t,t' € T, and t = at + (1 — a)t’. Note first that by linearity of T’
we have I'(f) = aI'(t) + (1 — @)['(#') = r. Thus,

A(r")(£) = Ae(r') (ot + (1 — a)t) + Ac(r)
= a2y (r)(t) + (1 — a)Ae(r") (') + aAc(r’) + (1 — @) Ac(r")
= ay(r)(t) + (1 = a)Ae(r)(t') + aAe(r) + (1 = @) Ac(r)
= Ae(r)(D). -

We are now ready to state the crucial lemma of this section, which says that a truthful
affine score for a linear property depends on the type only through I', modulo some linear
term independent of the report.

Lemma 3.22. Let A : R — A be given which weakly elicits a linear property I', where
A C Aff(V — R) and R and T are convex. Then there exists { € Lin(V — R) such that
for all .7’ € relint(R) and all t1,t € T,

Q[(T/)(tl) — ﬂ(r’)(tg) = E(tl — tg). (336)

Proof. Let t; =t —t2 € V such that I'(t1) = I'(¢2). By linearity of I' we have I'(¢4) = 0,
and moreover, I'(t + t4) = I'(¢) for all ¢ € T. Thus, these "level-set differences” ¢4
are independent of the I'-value of the level set; in light of this, we define TD = {tq €
(T = T)|T(tg) = 0} C ker(T).

Now let ¢ € relint(7) and t; € TP be arbitrary. By definition of relint (see §2.2
or [103, pp. 2-3]), we have some § > 0 such that ¢t + 0ty € 7. Note that I'(t + dty) =
I'(t) + 0 = r for some r € R. Thus, by Lemma 3.21 we have that 2 can be extended to
a(t+tg) + (1 — )t =t +adty for all a € R; that is, the set T', +span(7 ). Hence, we
conclude that 2 weakly elicits ' on extended type space 7~ = 7 U (relint(7") +span(7P)).
Note that as 7 is convex and R = I'(7), we have relint(R) = I'(relint(7)) (cf. [88, Prop.
2.44]), and in particular, T, +span(7P) C 7T for all r € relint(R).

We now break 2 into its linear 2, and constant 2. parts, so that 2(r)(t) = Ae(r)(t) +
A.(r). Observe that for fixed r, we have 20(r)(t1) — 2A(r)(t2) = Ap(r)(t1 — t2), as the
constant terms cancel out. We now show that 20,(r; 7" — r)(t4) = 0 for all r € relint(R),
r’ € R, using Corollary 3.20:
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for any t, € I',. Note that restriction r € relint(R) is necessary to guarantee that 2 is
defined (and truthful) for the point ¢, + 4.

Finally, as we have now shown that 20,(7)(¢4) is continuously Gateaux differentiable (see
[5, §7]) at all r € relint(R), and all directional derivatives are 0, we conclude that it must
be a constant function (in 7). Now fixing some r € relint(R) and letting £(tq) = 2,(r)(tq)
for all t4 € TP concludes the proof. O

From Lemma 3.22, the main result of this section now follows. Note that we must be
careful about the relative interior of R — to this end, we say that 21 weakly elicits I on
T if T'(¢') € argsup, A(r)(t’) for all ¢’ € T'. Similarly, we say 2 weakly elicits I" on R’ if
it weakly elicits T on T "1(R/).

Theorem 3.23. Let linear property T' : T — R and T'-regular affine score 2 : R — A
be given, where A C Aff(V — R) and R and T are convex. Then 21 weakly elicits T on
relint(R) if and only if there exists some convex G : R — R with subgradients {dG, },cr,
and some linear ¢ € Lin(V — R), such that for all r € relint(R) and t € T,

A(r)(t) = G(r) +dG,.(L(t) —r) + £(1). (3.37)

Proof. It is trivial that the given form is truthful, as observed above: £ plays no part in the
elicitation, and the remainder is truthful by Theorem 2.1. For the converse, given some
20 which weakly elicits I' on relint(R), we obtain an ¢ from Lemma 3.22 such that for all
r € relint(R), the score A'(r)(t) = A(r)(t) — £(t) depends on ¢ only through I'. To see
this, fix t, € T, and let AR (r')(r) = ' (+')(t,.); then for t € T',.,

A (') (1) — AR (D) = A (1) — £(t) = X' ()(tr) + L(tr) =0,

where the last equality uses Lemma 3.22. We now note that as the choice of ¢, above was
arbitrary, we may take a linear right inverse of T, satisfying ¢, = t, + at,s (this can
be done by Lemma 3.21). Now A” satisfies the conditions of Theorem 2.1 for type space
relint(R), from which the form (3.37) follows. O

We conclude with a few remarks. First, note that the restriction to relint(R) is not
merely for convenience, as the following example shows.

Example 3.3. Let T = {(t1,t2) € [0,1]? : to < to}, and I'(t) = t1. Then the following
affine score elicits I':

A(r)(t) =

2ty — 12 ifr>0
{r1 r ifr (3.38)

—t9 I'fTZO.

To see this, note that 2A(0)(t) < 0 for all t, so when t; > O reporting r = t1 is optimal.
Forty =0, the only type in T also has to = 0, and hence r = 0 strictly dominates. Thus,
we have strict elicitation. But 2l cannot be written in the form (3.37) as 21 depends on ty
in a way that is not constant in r.
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Intuitively, Theorem 3.23 is using the fact that I' forces A(I'(¢))(t) to be flat along
level sets of I", which tells one a lot about the subgradients on interior points. However,
Example 3.3 shows that all bets are off for boundary points. Put another way, if r is in
the (relative) interior, then the affine score has to be “well-behaved” for reports nearby.
But if r is up against the boundary of R, then the score can do something more extreme,
since it only has to be well-behaved on one side of 7.

We briefly note also that Theorem 3.23 applies to some nonlinear properties as well.
For any invertible 1) : R — R’ and linear property T, an affine score 2 : R’ — A weakly
elicits TV(t) = ¢(I'(¢)) if and only if

AN () = G (") +dGy1(n(D(t) =71 ()) + (1), (3.39)

of course under the same conditions as Theorem 3.23.
Finally, we remark that the proof above may have room for simplification.

Question 3.2. For linearT', can we show A(r)(t) = AR (r)(T'(t))+£(t) for some ¢, without
resorting to differentiation arguments?

3.4.3 Nonlinear properties

We now turn to the general (i.e. nonlinear) functional property case, though our results will
be far from general. We will need to make strong smoothness and geometrical assumptions.
We restrict to the scoring rule setting with finitely many outcomes O = [n], so that
T =P C A, is a convex set of distributions. For compact notation, we write our scores
as & : R — R" rather than the traditional & : R x O — R; thus, the expected score of
report r under belief p is &(r) - p.

Our result ties in nicely with the scoring rules literature, so we first review the relevant
work. Recall from §1.2.1 the price rate argument of Savage [92]: to obtain a truthful report
of an agent’s value for a commodity, simply offer to sell one unit of the commodity at each
of a sequence of prices, in even intervals between 0 and the reported price m. One easily
sees that “one unit” could easily be replaced by “any positive amount” and the elicitation
would still be valid. In fact, Savage points out that making this continuous and selecting
some positive amount A(7) yields the representation

S(n',m) = /07r AMa)(m — a)da, (3.40)

since the agent gains value \(«)7 for each transaction but pays A(«)a.

This integral representation of scoring rules has come up again and again; that of
Schervish [93] is perhaps the most famous, but it also appears in Osband [78], Lambert
et al. [65, 63], and Gneiting [50]. In all cases, it is noted that one may take some set of
proper base scores (usually not strictly proper) and merely take a weighted integral over
them to obtain another proper scoring rule.
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The result of Lambert et al. [65] is particularly relevant here, as it addresses nonlinear
scalar properties. They show that a scoring rule is proper for I' : P — R if and only if one
can write

S(r') = /T A(r)v(r)dr, (3.41)

where A(77) is any nonnegative function and v is determined uniquely by I alone. The
authors also extend this result to higher dimensional R, but under very restrictive con-
ditions. In particular, for a linear property I', their result does not cover the score
&(r) = G(r)+ V.G - (T'(p) —r) where G(r) = " Mr for non-diagonal p.s.d. M € R¥*;
that is, when GG is a quadratic form which is not axis-aligned.

As further motivation, consider the form we obtain when applying the linear charac-
terization above (Theorem 3.23). We spell this out in §4.2.1, but briefly, we find that

&(r',p) = G(r) + VG - (L(p) — ) + £(p) (3.42)

for some linear ¢ : P — R. Now assume that & is differentiable and G is twice differen-
tiable; then we have

V:8(,p) = V,G+ (D(p) = 1) ViG = V,G = (T(p) = 1) VI G. (3.43)
Hence, letting A(r) = V2G and V(r) = (A — r17"), where I'(p) = Ap, we have

/

T

&) = / (A@) V() ar. (3.44)
To

Thus, we again have V' determined uniquely by T" and A an (essentially) arbitrary positive

semidefinite matrix function (p.s.d. as G is convex), and we can write any & as the integral

over these choices.

We will show that any continuously differentiable proper scoring rule for a nonlinear
property I' can be represented in a similar way, provided it satisfies the condition below.
The crucial insight is in the construction of V. We will see that just as A = V,I" for all
p € P in the linear case, using VI for V will also work in the nonlinear case, evaluated at
a particular choice of representatives p(r).

T" is elicitable, differentiable, and has convex maximal level

Condition: sets of dimension dim(P) — dim(R) =n — k — 1.

(3.45)
As usual, we set R = I'(P). We say a set S is convex maximal (in P) if S is the
intersection of an affine subspace and P. In other words, S is maximally convex in P, in
the sense that it contains all points in its affine extension which lie in P.
We first prove a useful lemma which lets us decompose the derivative of &.

Lemma 3.24. Let continuous V (r) € R¥*™ be given such that ker V(r) = span(I'~1(r))
for all r € R. Then for any continuously differentiable proper scoring rule G for I', one
can write (V,&)" = A(r)V(r) for some continuous A(r) € RF*F,
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Proof. By propriety, any p € I'"}(r) must satisfy (V,&)"p = 0 (but not the converse
need not hold). Hence,

ker V (r) = span(I'"}(r)) C ker (V&) .
But now we have
imV(r)" = (ker V(r)t D (ker (V,6)")t =im V, &,

meaning each column of V,.& can be expressed as a linear combination of the rows of V().
Folding the coefficients of these linear combinations into A(r) gives us the (V,&)T =
A(r)V(r). For continuity of A, note that by assumption on I', we have dim(I';) =
n —k — 1, and thus dim(ker V') = n — k. Hence, by classic results regarding the Moore-
Penrose pseudoinverse [83, Thm 4.2], the pseudoinverse V(r)* of V is continuous, so
A(r) = V,&TV(r)*t is continuous as the product of continuous functions. O

Theorem 3.25. Let I': P — R C RF satisfy condition (3.45) and let G : R — R" be a
continuously differentiable scoring rule which is proper for I'. Then & satisfies

(V:&)" =A(r)V(r) (3.46)
for V(r) € R™** determined by T' alone, and A(r) € R¥** positive semi-definite.

Proof. Let p: R — P be any continuously differentiable function such that I' o p = idg,
which exists by the inverse function theorem, and define

V(r) = (D) (1 -00017). (3.47)

Note that this choice of V(r) depends only on I'" (and our choice of p, which in turn
depends only on T').
By construction,

qgekerV(r) < (V) (¢—p(r)) =0.

Since the level sets of I' are convex maximal, we see that the derivative of Vj,)I" in
the direction (¢ — p(r)) is zero precisely when I'(¢q) = I'(p(r)) = r. Thus, ker V(r) C
span(I'~(r)). Now by Lemma 3.24, we have some continuous A : R — R¥** sych that
(V,.8)T = A(r)V(r), and it remains to show that A(r) is positive semi-definite.

For a contradiction, fix » € R and any unit-length v € R¥ such that v " A(r)v < 0. By
continuity of A(-), there exists some € > 0 such that

V' € Bo(r) Vo' € Be(v): v  A(r v’ <0, (3.48)
where B.(-) denotes the Ly ball of size e. Now define

fl@) = &(r + av) - p(r).
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By the above, the derivative of f is given by

df () = 0" (V&) T p(r)
=0 A(r + av)V (r 4 av)p(r)
=0 A(r + aw) (Vpranl) (B(r) — (r + av)).

By properties of directional derivatives and the chain rule,

lim (Vj(rtanl) <ﬁ (r) = plr + av))

a—0 o
_ ( )(Olllg%)A r) — ﬁ()(ér%—av))
= ( p(r)F)
— V(o ><—v>

Hence, there exists some 6 > 0, § < ¢, such that for all 0 < o < § we have
Vo = —a ! (VirtanT) (0(r) — p(r + aw)) € Be(v).
We also have r + av € B.(r) since a < ¢, so by (3.48),
df (@) = v A(r + av)(—av,) > 0.

Thus, f is increasing for 0 < a < §, so we have

S(r)-p(r) = f(0) < f(8) = S(r + ov) - p(r),
which contradicts & being proper for I'. O

We now see that, in fact, the integral representation (3.41) above also holds for gen-
eral (well-behaved) vector-valued properties as well. For any smooth & eliciting I' satisfy-
ing (3.45), we may write

/

,
S(r') = / (A) V() drs (3.49)
70
this is exactly the same formula (3.44) that we motivated from the linear case! Intuitively,
one should be able to find a path r(t) from 7y to 7’ such that t — r(t)TA(r(t))V (r(t))p
is monotonically decreasing, just as with Savage's price rate formula (3.40), with the zero
being precisely when r(t) = I'(p). In this sense, we are essentially generalizing the “offer
to sell units of a commodity at increasing prices” trick to vector-valued nonlinear settings.
Note that we have not said anything at all about which properties I' are elicitable;
this is a major open question. By the above intuition, we might expect that the elicitable
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properties are precisely those which admit a path r(¢) yielding such monotone behavior.
An important first step to answering this question is understanding when the form V' (rg)
for fixed 7o can itself be viewed as a (non-strictly) proper scoring rule for T, i.e., for what
I'is V(rg) a base score?

Also, we have not characterized the functions A which the designer may choose from
to construct &. This is in essence the analog of the “degrees of freedom” discussion
from §3.4.1 for finite properties. We conjecture that A is the Hessian of a twice continuously
differentiable convex function G : R — R, just as in the linear case. If this were true,
then scoring rules would in some sense be “nonlinearly transformed” Bregman divergences.
This intuition seems consistent with the examples given by Gneiting [50].

Finally, it is interesting to find sufficient conditions for the level sets of I' to be convex
maximal. One such condition is that I" itself be monotone, in the sense that on any line
L :R — P and for any direction v € R¥, the function (I'o L) - v = (a + I'(L(a)) - v) is
monotone.

Lemma 3.26. /f T" is monotone in the sense above, the level sets I, are convex maximal
inR.

Proof. By monotonicity of I, the functions v¥(p) = I'(p) - v have convex level sets (take
p,p’ such that T'(p) - v = T'(p') - v; the function a — T'(ap + (1 — «)p’) - v is monotone).
Now by an argument of Lambert [63] given in Step 2 of the proof of Theorem 5, we have
that the level sets of 4V are convex maximal; we briefly sketch the argument here. The goal
is to show that {p : v’(p) < z} and {p : v’(p) > =} are convex, and then invoke classic
results in geometry to conclude that 72 = {p : 7¥(p) = x} is a hyperplane intersected
with P. Letting p,p’ € P with 4¥(p) > v(p') > x, let po, = ap + (1 — «)p’ and define
f(a) =" (pa). By continuity, we have [v*(p), 7" (p)] € f([0,1]), and by convexity of the
level sets of 4¥ we conclude [v*(p),7*(p’)] = f([0,1]).
Now we have that 2 is convex maximal for all v and z. To conclude, we note that

FT = m ’Y;L')"U’ (350)
vERFK

and thus I, must be convex maximal as well. O

3.5 Future work

Many questions in the literature on properties remain open. Most notable is the char-
acterization of elicitable nonlinear and multidimensional properties and their scores —
real-valued distributional properties are covered in [65, 63] and the linear vector-valued
case is treated above. We hope that the preliminary results and intuition from §3.4.3 will
yield a useful characterization in this case.

Another interesting direction is for non-functional properties: aside from the finite R
case, the vast majority of the literature to our knowledge assumes that I' is a function
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(specifying a single correct report for each type). The generality of Theorem 3.2 may
prove useful in exploring non-functional settings as well. A result requiring few regularity
conditions on I" would be useful in domains such as statistics where natural properties like
the median cannot in general be expressed as functions.
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Chapter 4

Eliciting means of distributions

4.1 Introduction

In this chapter we draw strong connections between four seemingly distant concepts: scor-
ing rules, exponential families, prediction markets, and Bregman divergences. Many pairs
of these concepts have been examined before, but by fitting them all under one roof, we are
able to make a much clearer picture of how these objects are interrelated. We first outline
our findings from a high level, then discuss previous work and give the formal background.

4.1.1 Overview

The goal of this chapter is to draw connections between scoring rules, (generalized) expo-
nential families, prediction markets, and Bregman divergences. While we will give formal
definitions below, for now the reader may think of exponential families as maximum entropy
distributions under a mean constraint of a particular statistic. (For the other concepts see
§1.2.1, §1.2.2, and §3.3.3.)

Our exploration into these connections is motivated by the role of convexity in each
— the Bayes risk of scoring rules, the cost function of a prediction market, the cumulant
of exponential families, and the generating function of a Bregman divergence — and the
mysterious appearance of a map which we call ¢ whose mean under some fixed distribution
is central to each theory. Beyond these notions, however, we are motivated by several
natural questions:

e When can a scoring rule for the mean of a random variable be written in terms of a
scoring rule for the entire underlying distribution?

e When can an incomplete prediction market be run as a special case of a complete
one?

e What is the (generalized) relative entropy of two members of a (generalized) expo-
nential family, in terms of their parameters?
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e Are prediction markets more or less expressive than scoring rules?

e How is the statistic of an exponential family related to the random variable in a
proper scoring rule for an expectation? To the payoff function of an incomplete

prediction market?

e What is the net payoff of a trade in a prediction market, expressed in terms of the
prices before and after the trade?

We will answer all of these questions in this chapter, as well as several questions that one
might not think to ask, such as the relationship between incomplete prediction markets

and exponential families.

In short, the crux of our conclusions is that all four objects are in some sense equivalent.
Figure 4.1 gives this high-level depiction of our results; see Table 4.1 for a more detailed
retrospective view of the chapter. Each "<=" in Figure 4.1 represents a bijection between
the two constructs, that is, a mapping from one to the other and back. Moreover, under
certain global assumptions discussed below, the diagram commutes, in the sense that
composing bijections on edges yields the remaining bijections. In all cases, the bijections
go beyond merely “counting”, but say something deeper about the relationship between
the concepts, enabling us to answer the above questions.

< Prediction Market >

6
o

Thm 4.9

Generalized \

(Bregman Divergence)

7
Dy, 7,

<Exponentia| Family /

Gy 40D
b
=

@

( Scoring Rule )

Figure 4.1: A four-way equivalence. Gray denotes primal objects (distributions), while
clear denotes dual objects (random variables) — divergences and GEFs can act as both.

4.1.2 Previous work

Several connections between the four concepts we consider have been discovered before.
To start, the relationship between Bregman divergences and scoring rules for expected
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values dates all the way back to Savage's 1971 paper, when he introduced what is now
called the “Savage representation” (1.2), which is essentially a Bregman divergence [92].
Since then his representation has been further formalized and extended, by e.g. Gneiting
and Raftery [51] and Gneiting [50].

Even outside the scoring rules literature, it has been observed in machine learning that
the minimizer of the empirical average of Bregman divergences is the mean of its argument
(a generalization of the principle of least squares), and Banerjee et al. [15] give conditions
under which Bregman divergences are the only loss function with this property. While
using a somewhat different terminology, one can also find a very thorough treatment in
Reid et al. [84] and Vernet et al. [96].

Hence, it is fair to say that our result that scoring rules are in some sense equivalent to
(generalized) Bregman divergences is far from groundbreaking. However, there is value in
the generality of our result; to our knowledge, it is the most general of any in the literature,
allowing for quite general vector spaces and very few regulatory conditions. In particular,
nearly all previous results for the expected value case (i.e. eliciting I'(p) = E,[¢] for some
¢ : O — R) require some sort of differentiablity. Some authors, e.g. [15, 50|, also make the
assumption that one observes only the value of the random variable, not the randomness
generating it (i.e. ¢(o) rather than o itself, or equivalently O C R and ¢ = idg), thus
making the characterization less general. Gneiting [50] points out that this previous work
all involve smoothness conditions, and states, “A challenging, nontrivial problem is to unify
and strengthen these results, both in univariate and multivariate settings” — in the present
chapter, we aim to do just that.

Adding prediction markets to the story, we already saw in §1.2.2 Hanson's equivalence
between the scoring rule and prediction market form of the LMSR [56]. More recently, the
{scoring rule, prediction market, Bregman divergence} trio has been discussed in Abernethy
et al. [3]. There the authors point out that the net payoff of a trade in a prediction market
can be written as a Bregman divergence between the final outcome and the prices before
and after the trade. They also show a general equivalence theorem between market scoring
rules and prediction markets for the complete market setting, showing that each model can
be simulated with the other. Our results will generalize these, in removing differentiability
assumptions and extending the equivalence to the incomplete market setting.

Exponential families have a rich history and literature, dating back to the 1930s. We
give a very brief overview of their general theory and derivation in §4.3. Many properties of
exponential families are known, but for our exploration, the most relevant is the connection
to Bregman divergences. It has been observed in particular that the relative entropy
between two members of an exponential family is the Bregman divergence with respect to
the cumulant of the two corresponding parameters (cf. Amari [6], Azoury & Warmuth [12],
and Nielsen & Nock [76]). Banerjee et al. [16] leverage this identity to show a bijection
between Bregman divergences and exponential families.

YIn fact, the L function he considers, which we called a score divergence in §3.3.3, is precisely a
Bregman divergence in his setting.
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Another key property of exponential families is that they are maximum entropy distri-
butions; given a statistic, the distribution with a particular mean of the statistic which is
of maximum entropy forms an exponential family [18]. In 2004, Griinwald and Dawid [54]
introduced generalized exponential families (GEFs) as maximum entropy distributions for
other entropy functions — that is, they noted that one may define classical exponential
families as maximum entropy distributions for the usual Shannon entropy, thus making the
generalization to other notions of “entropy” immediate. We will work with these GEFs,
though our definition will slightly depart from theirs by mirroring the exponential fami-
lies literature more closely, thereby illuminating connections to that literature more easily.
Some aspects of our study of GEFs are inspired by unpublished work of Sébastien Lahaie.

4.1.3 Definitions and notation

We now give the formal definitions that will be used throughout the chapter. Note however
that we defer the formal introduction of generalized exponential families to §4.3. Through-
out, O is a (possibly infinite) set of outcomes, P C A(O) is a convex set of probability
measures, and R is a convex report space. Every result will involve a function ¢ : O — R,
though this function plays many roles: a statistic, a payoff function, a random variable,
and a link function.

For the majority of the chapter, owing to our heavy use of convex conjugate duality,
we will work with a dual pair of vector spaces, and indeed a pair of dual pairs in §4.3; see
Definition 3.6 and [5, §5.14]. The dual pair (V,V*) captures the report space R C V.
The dual pair (W, W?*) is between probability distributions P C W and random variables
W*, with the standard bilinear form (p, f) = E,[f]. Note that when we restrict to the
dual pair setting, we must have E,[f] € R for all p € W and f € W*. This level of
abstraction allows us to work with measure spaces, such as the pair (C(X), ca(X)) where
X is a compact subset of R”™.2 That said, a reader uninterested in applications to measure
spaces may safely assume that a base measure v on O has been chosen, and identify p € P
with its density function.

Each result in this chapter has its own assumptions, on the various functions and
spaces involved, which is also summarized at the end in Table 4.1. However, all results
in this chapter hold under the assumption that we are working in a dual pair of vector
spaces and the convex functions are all proper, strictly convex, and differentiable (though
the discussion gives a more precise account of these “global” necessary conditions). A
reader more interested in the conceptual rather than technical content may safely make
this single set of assumptions throughout, perhaps even further assuming V = V* = R*
for concreteness.

We now introduce the characters of our story, starting with divergences.

?Here C'(X) denotes continuous functions from X to R and ca(X) denotes the space of bounded and
countably additive signed measures on the sigma algebra associated with X (here the Borel algebra).
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Definition 4.1. A generalized Bregman divergence on space X is a function D¢ 4c :
X x X — R given by

D¢ ac(z,2') = G(z) — G(2) — dGp (x — 2), (4.1)

where G : conv(X) — R is convex with G(X) C R, and dG is a subgradient of G. If G
is differentiable on X we simply write Dg and call Dg a Bregman divergence.

Note that, as mentioned in §3.3.3, when G is continuously differentiable, the form (4.1)
is simply called a Bregman divergence. Hence, Definition 4.1 is merely a natural extension
to the nondifferentiable case, and has been studied in machine learning (cf. [60]). In this
chapter, our spaces will be convex, so we will always have G : X — R in the above.

The following are slightly reformulated definitions of scoring rules and prediction mar-
kets, so that we may more easily use the results of Chapter 2 and Chapter 3 in our
exploration. Note that in both cases the corresponding affine score is given by the ex-
pected payoff under the “type” p € P, e.g. A(r)(p) = &(r,p). Throughout the chapter
we will refer to both & and P8 as affine scores, having this relationship in mind.

Definition 4.2. Given outcome space O, report space R, and set of probability measures
P C A(0O), ascoring rule is a function & : Rx O — R. We write G(r,p) = E,p[S(r, 0)]
to denote the expected score. We say & (weakly) elicits a property T' : P — R if for all
pEP andallr € R,

&(r,p) < &(T'(p),p)- (4.2)

Definition 4.3. Given outcome space O, price space R, share space Q, payoff function
¢: O — R, and set of probability measures P C A(O), a prediction market is a function
P : A x O — R defined by

P(q,0) = (g, 9(0)) — C(q), (4.3)

where C = G* for some convex G : conv(R) — R with G(R) C R and 0G(R) = Q. As
with scoring rules, we write B(q,p) = E,~,[B(q, 0)] to denote the expected payout.

A reader who is even remotely familiar with prediction markets may find Definition 4.3
somewhat confusing, as it is lacking the sequential nature of a prediction market mechanism
— note that the goal here is not to capture the dynamic mechanism of buying and selling,
but to capture the “one-round” incentives as an affine score. The standard framework
discussed in §1.2.2 can be recovered by considering a trade » € R¥ when the market
is at state ¢ € R*. The cost of this purchase is C(q + ) — C(q), and upon outcome
o being revealed, the trade pays off ¢(0) - r. The net payoff of this trade then is just
B(g+r, 0)—P(q, 0). We can thus capture the usual dynamic prediction market mechanism
by taking differences of the P8 function: for a trade sequence yielding market state vectors
q0, 91, - - -, qN, the net payoff of the agent responsible for trade ¢; — ¢;11, upon outcome

o being revealed, is B(¢i+1,0) — P(gi, o).



69

As stated, (affine scores for) prediction markets are much more restricted in their
dependence on o than scoring rules are. In particular, a prediction market can only depend
on o through ¢. To “even the playing field,” we introduce the notion of a fair score, which
in essence imposes this condition on scoring rules as well.

Definition 4.4. A scoring rule & : R x O — R is I'-fair for property T if for all p,p’ € P
such that T'(p) =T(p') =r, &(r,p) = &(r,p').

4.2 Prediction market duality

In this section we consider the relationship between prediction markets and scoring rules,
when viewed as affine scores. Are the scores & and ‘3 related in any way? Is one more
expressive than the other, all else being equal? Along the way we will relate both scoring
rules and prediction markets to divergences.

Of course we must formalize what it means for one affine score to be more or less
expressive than another; for this we introduce the notion of a reduction.

Definition 4.5. Affine score 211 : R1 — A reduces to s : Ry — A if there exists some
map ¢ : R1 — Ro such that for allr € Ry andt € T,

Ay (r)(t) = A2(p(r))(2).
If furthermore 2o reduces to 211, we say the affine scores are mutually reducible.

It will be useful to say two scoring rules are equivalent if the only difference is some
predetermined payoff associated with each outcome, regardless of the agent’s report. In-
tuitively, these rewards should have no bearing on the behavior of the agent, being entirely
outside her control. Interestingly, this notion of equivalence was introduced as early as
McCarthy [71], and is now known as strong equivalence in the scoring rules literature; see
e.g. Gneiting and Raftery [51] and Dawid [39].

Definition 4.6. Scoring rules G : R x O — R and &' : R x O — R are equivalent if
for all 0 € O, &'(r,0) — &(r,0) is a constant independent of r. In this case, we write
&' = 6.

4.2.1 Scoring rules and divergences

As a warm-up, we show a strong relationship between scoring rules and divergences. This
result is an easy application of Theorem 3.23, which gave a characterization of affine
scores which weakly elicit linear properties. We simply apply it to the restriction that 2 be
a scoring rule, and note that divergences are trivially in one-to-one correspondence with
the generating convex function (and choice of subgradients). Note that P here can be
any convex set of probability measures, provided that E,[¢] is defined for all p € P (see
below). We implicitly assume regularity here; see Chapter 3 for details.
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By standard properties of (generalized) Bregman divergences, such as nonnegativity, it
is easy to see that the scoring rule defined by

S(r,0) = G(¢(0)) — Dg,ac(¢(0),7) +£(0) (4.4)

elicitsI" : p — E,[¢]; the expectation passes inside to yield &(r, p) = f(p)—Dg ac(I'(p), )
for some f, and hence the optimal report is » = I'(p). Amazingly, this is in some sense
the only form which elicits I'. We can show this immediately, by applying Theorem 3.23
under the constraint that G be a scoring rule.

Theorem 4.1. Let P C A(O) be convex, let map ¢ : O — V be given, and set I'(p) =
E,[¢] and R = I'(P). Then & weakly elicits ' on I~ *(relint(R)) if and only if there exists
some convex G : R — R with subgradients {dG,},cr, and some map { : O — R, such
that for all r € relint(R) and o € O,

S(r,0) = G(r) + dG,(p(0) — r) + £(0). (4.5)
Furthermore, from the form (4.5) we can easily construct a divergence, namely
DG,dG(’r? T/) = G(Ta p?") - G(TlapT)v (46)

where p, € T, is any distribution with I'(p,) = r. Note that this works even though ¢ # 0
in general, since the ¢ terms cancel out. Hence, we have a strong equivalence between
generalized Bregman divergences and scoring rules for linear properties. Note that the
restriction to relint(R) is necessary, in the sense that & need not be of the form (4.5) on
the boundary of R; see Example 3.3.

4.2.2 Prediction markets and scoring rules

We now turn to the relationship between prediction markets and scoring rules, which
will in turn transfer to divergences by the above. We first show that, under very broad
assumptions, scoring rules can be expressed as prediction markets.

Proposition 4.2. Let P C A(O) be an arbitrary set of probability measures, and R CV
be given, both spaces being potentially non-convex. Let map ¢ : O —V and G: R — R
be convex with G(R) C R be given. Then affine score S(r, 0) = G(r) + dG,(¢(0) — 1)

reduces to B(q, 0) = q(#(0)) — G*(q).

Proof. Take ¢(r) = dG,. Then by Lemma 3.11, we have G*(dG,) = dG,(r) — G(r).
Hence,

&(r, 0) = G(r) + dGr(¢p(0) — 1) (4.7)

p(r)(¢(0)) — G*(p(r))
= Plp(r), 0). O
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In light of Theorem 4.1, we know that every scoring rule which elicits " : p — E,[¢]
is equivalent to a rule of the form (4.7) on relint(R). Thus, modulo these details, we
conclude that prediction markets are at least as expressive as scoring rules.

Proposition 4.2 relies only on very basic tools from convex analysis, and in essence
follows directly from the definition of the conjugate. As mentioned at the end of §3.3.2,
this reduction is just report duality, in the same way that any mechanism can be considered
in “menu” form.

To show the converse, that prediction markets reduce to scoring rules, will require
more care, and in general the conditions will be more stringent. Intuitively, this structure
is needed because many share vectors represent the same market maker price, so while it
is easy to map share vectors to prices (and indeed this is in some sense baked into the
prediction market framework), going from prices to share vectors in a consistent way is
more challenging. Among other conditions, will we need to work in our paired spaces
(V,V*).

In an effort to make the proof more modular, we introduce now the major condition
required for this result to hold. Assume G and subgradient dG are fixed, and C = G*.

Vge Q, Ire 9C,, Yo O, (q—dG,,r— ¢(0)) =0. (4.8)

This condition (4.8) essentially says that mapping from share vectors to prices and back
has no effect on net payoffs. Suppose a trader has belief p € A(O) and buys vector ¢ so
that the market price becomes r = E,[¢]; then for any realized outcome o the difference
between the trader’s expected payoff (q,r) and actual payoff (g, ¢(0)) is the same if we
replace ¢ by the “equivalent” share vector dG..

Theorem 4.3. Given dual pair (V,V*) with R C V, let G : R — R be convex, proper,
and ls.c., and let C = G*. If condition (4.8) holds, then the affine scores B(q,0) =
(q,¢(0)) — C(q) and &(r,0) = G(r) + (¢(0) — r,dG,) are mutually reducible.

Proof. One direction has been proved in more generality in Proposition 4.2. For the
converse, by the Fenchel-Moreau Theorem, given as Theorem 3.13, we immediately have
G* = C* = G. Now for all ¢ € Q we define ¢(q) = r € 9C,; where r is the report
guaranteed by condition (4.8). Applying Lemma 3.11 for C, we have C(q) = (¢, ¢(q)) —
C*(p(q)), whence

“(¢(q) + (g, ¢(0) — ¢(q))
) + <ng0(q)7 ¢(0) - <,0(q)>

where in the third equality we used C* = G and (4.8). O

Of course, it remains to show that condition (4.8) can be satisfied. We now give
sufficient conditions, but it may be that (4.8) holds in other settings as well.
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Lemma 4.4. IfG is proper and |.s.c., and G(r;r' —r) = —G(r;r—1') for all r € relint(R),
r € R, then (4.8) holds for r € relint(R) and q s.t. 9C, M relint(R) # 0.3

Proof. Fix g and r € relint(R)NIC, # 0, and recall the definition of the convex conjugate
for C"

Clq) = sup {{g;r) = G(r)}. (4.9)

By Corollary 3.14 and Lemma 3.11 for C, we know that r must be a maximizer of the
objective in (4.9). Now let f(r) = G(r) — (g,r) denote the (negative) of this objective,
and note that f is convex. Since r maximizes f over all r € R, we must in particular have
f(r;v) =0 for all v € R — {r}; otherwise, by assumption either f(r;v) or f(r; —v) would
be strictly positive, contradicting optimality of r.

A standard result of convex analysis is that g(z;v) = sup{(v,d) : d € g, } for proper
convex g and x € relint(dom(G)) [89, Thm 23.4]. By our assumption on G however, note
that G(r;v) = —G(r; —v) implies that {(v,d) : d € 0G,} is a singleton for each r. The
same logic applies to f, since df, = {q} — OG,. Thus, we have for all d € G, and all
r eR,

0=f(rir' —r)={"—r,g—d), (4.10)

completing the proof. O

Putting the sufficient conditions from Lemma 4.4 together with Theorem 4.3, we now
have a class of prediction markets and scoring rules which are mutually reducible.

Corollary 4.5. Let G : R — R be convex, and let C = G*. If additionally G is proper
and l.s.c. and and G(r;v) = —G(r;—v) for all r € relint(R), v € {r} — R, then the
affine scores B(q, 0) = (g, ¢(0)) —C(q) and &(r, 0) = G(r) +dG,(p(0) —r) are mutually
reducible on Q' = {q € Q : dC,; Nrelint(R) # 0} and R’ = relint(R).

Once again applying Theorem 4.1, we now see that any fair scoring rule which elicits
a linear property I' is mutually reducible with a prediction market on the relative interior
of the report space. Stepping back from our world of affine scores, Corollary 4.5 gives
broad conditions under which the market scoring rules discussed in §1.2.2 have exactly the
same expressiveness as incomplete prediction markets, thereby generalizing the equivalence
result of Abernethy et al. [3, Thm 8.2] to the incomplete setting. Hence, we have come
full circle: Hanson introduced the market maker prediction market as a scoring rule [56],
which was “dualized” to a share-based cost function framework by Chen and Pennock [82],
and further extended to incomplete setting by Abernethy et al. [1, 3]; we now have seen
that the incomplete share-based market makers are again the same as market scoring rules
for a linear property.

It is worth noting that the directional differentiability condition of G is a mild one from
the perspective of prediction market design, as it essentially implies that share vectors ¢

3Recall that g(z; d) is the directional derivative of g at z in direction d.
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have “unique instantaneous prices.” This is often a desirable property in and of itself,
since otherwise prices will appear to jump as agents trade, or the “market consensus” price
could be a range of values instead of a single point.

We now take one step further to give a direct connection between prediction markets
and divergences.

Corollary 4.6. Under the same conditions as Corollary 4.5, there exists an invertible ¢ :
R’ — Q' such that we may write

Deac(r,r") = B(e(r), pr) — Ble(r'), pr), (4.11)
B(q: 0) = G(¢(0)) — Da,ac(¢(0), 9~ (a)) (4.12)

for all g € Q', where G = C* and dG is a subgradient of G, and E,, [¢] = r for all 7 € R'.

Note that the expression (4.11) is the net profit of a single trade in the standard
prediction market framework. That is, the right-hand side may be written (¢(0),¢ — q) —
(C(q") — C(q)), which is just the payoff of the trade ¢ — g minus its cost. Hence,
Corollary 4.6 says something surprising: the net profit of a trade in a prediction market
can be expressed as the divergence between the prices before and after the trade. This can
be useful when designing a prediction market according to some notion of “information
distance” — one can give the traders a direct incentive to minimize the distance between
the market price and their belief, for any Bregman information distance.

Finally, to illustrate why extra care is needed for mutual reducibility, we give a very
simple example of a nondifferentable G for which condition (4.8) and Theorem 4.3 do
not hold. In this case, the prediction market has strictly more expressiveness (in terms of
the possible payoffs) than the corresponding scoring rule. The G here is the same as in
Example 3.1 and Figure 3.1.

Example 4.1. Let G(r) = |r|+72/2 and dG,. = r+sgn(r), where sgn(r) denotes the sign
of r (which is 0 at r = 0). By a simple computation, C(q) = G*(q) = (¢ — sgn(q))?/2
when |q| > 1 and C(q) = 0 on [—1,1]. Now let ¢ = 1/2, which has 0C; = {0}. By
condition (4.8) we would need 0 = (¢ — dGo,0 — ¢(0)) = q- ¢(0) for all 0. Thus, as long
as ¢(0) # 0 for some o, we have violated eq. (4.8).

Moreover, we clearly cannot reduce 3 to S in this case, since each q € [—1,1] would
have to have p(q) = 0, but except for ¢ = 0 and ¢(0) = 0, we have {(q,p(0)) # 0 =
<dG¢(q),¢>(o)>. In essence, the prediction market is much more expressive with regard
to the belief Ey[¢] = 0, offering agents an infinite array of utility functions, whereas the
scoring rule offers only one.



74
4.3 Generalized exponential families

As mentioned in §4.1.3, generalized exponential familias (GEFs) are an extension of clas-
sical* exponential families as maximum entropy distributions for non-standard entropy
functions. Below we take the reader through the very basics of the exponential family
derivation, and show how one may generalize them in a natural® way for other choices of
entropy.

The goal of this section is two-fold. First, we wish to develop the theory of generalized
exponential families beyond the excellent foundation of Griinwald and Dawid [54]. Second,
and more relevant to the broader story of this chapter, we seek the machinery necessary
to relate GEFs to divergences, scoring rules, and prediction markets. In many cases, the
relationships we uncover are surprising; as it happens, GEFs are the “answer” to many
natural questions one may ask about the other constructs.

As before, we assume that P is a convex set of distributions. Throughout this section
and the next we will write ¢ 6 to mean o — (¢(0),0). We will also be assuming P C W
for the dual pair (W, W*) given by the duality (p, f) = E,[f], as mentioned in the
introduction. Note: there are many symbols and spaces at play in this section, and
for those unfamiliar with exponential families (and even more for those who are, as we use
somewhat nonstandard notation), it may be helpful to refer to Figure 4.3 as a roadmap.

Our techniques are almost exclusively grounded in convex analysis. In particular, we will
assume for the whole section that we are working with proper and lower semi-continuous
(abbreviated I.s.c.; see Definition 3.7) convex functions f, so that the Fenchel-Moreau
Theorem applies and we may conclude that f** = f. Beyond this, a major source of
seemingly mysterious results is the simple observation that by linearity we may pass between
inner products in (W, W*) to those in (V,V*). Specifically, we will constantly appeal to
the fact that (p,¢'0) = (E,[¢], 6).

Exponential families

Before formally introducing generalized exponential families, we recall some basic concepts
from the literature on classical exponential families. In this case, we have a some base
measure v on (O,Y), and a statistic ¢ : O — R¥, and a parameter space O called the
natural parameters. The exponential family {py}e is defined by

po(0) = exp{p(0) 6 — T(6)}, (4.13)

where U(6) is chosen to normalize pg, namely

U(0) = log/@exp{QS(o)TH} dv(o). (4.14)

*Throughout, we use the term “classical” to mean the standard definition in the literature.
5Though in same cases it may be more natural to be mean than natural; see p. 79.
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Typically the parameter space © is actually defined in terms of ¥, letting © = {# € R¥ :
V() < oo}

Many interesting characteristics of exponential families are known (see e.g. [18, 98]),
but for our exploration two are especially relevant: exponential families have alternate
parameterizations in terms of the mean of the statistic ¢, and they can also be viewed as
maximum entropy distributions under a mean constraint. Very briefly, one can check that,
surprisingly, VU (0) = E,, [¢]; that is, the derivative of ¥ at § is precisely the ¢-mean for
pe. This allows one to reparametrize the family by E,,[¢]. Moreover, one can derive this
mean parametrization via a maximum entropy calculation. We briefly sketch this argument
now.

The widely-used notion of entropy in probability theory is that of Shannon entropy,
defined as

H(p) = — /O p(0) 10g p(0) dv(o). (4.15)

The principle of maximum entropy states that given some data with empirical mean f,
to estimate the distribution from which the data was generated, one should compute the
distribution p of maximum entropy H(p) under the constraint E,[¢] = fi. Formally, we
wish to perform the following optimization.

p € argsup{H(p) : p € P,E,[p] = [i}. (4.16)

To solve this problem, we may turn to variational analysis and Lagrange multipliers, yielding
the solution (4.13) [38, Thm 12.1.1], where 6 is the vector of Lagrange multipliers from
the calculation.

One can also derive (4.13) via convex analysis. As it turns out, ¥ is a convex function,
and happens to equal (—H)*, the convex conjugate of (negative) Shannon entropy, applied
to a particular point. To see this, first compute the entropy dual,

(—H)"(g) = log /0 exp{q(0)} dv(o), (4.17)

and from there we can check that indeed ®(6) = (—H)*(¢'6). More surprisingly, we can
rederive (4.13) via the derivative of (—H)* at the same point:

VyH) (o) = e s = eolalo) - @), (418
whence we have
Vgro(—H)*(0) = exp{¢(0) "6 — U (0) = py(o). (4.19)

As we will see below, this derivation via convex analysis is in essence the same as the
maximum entropy calculation.

As a final note, it is common in the literature to restrict to regular families, defined as
follows.
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Definition 4.7. An exponential family {pp}o as defined by eq. (4.13) is regular if © is an
open set.

Generalizing to other entropies

As we will show in this section, all of the observations and properties of classical exponential
families mention above can be extended to families derived from other entropy functions
other than Shannon entropy. We are heavily influenced by Griinwald and Dawid [54], who
introduced idea of generalized exponential families, along with many of the ideas we will
explore. Our approach is different, however, relying much more on convex analysis. As a
result, our setting will be slightly less general, but the extra regularity will go a long way.
See the discussion before §4.3.1 for more details.

We first set limits on what we will consider an alternate entropy. NB: our entropy
functions will always be convex, unlike Shannon entropy which is concave; the reader may
need to mentally insert negations if more comfortable with the latter.

Definition 4.8. A function F': P — R is a (generalized) entropy function if it is convex,
l.s.c., and proper.

Recall that we adopt the convention F(z) = oo for x ¢ dom(F), i.e., F((p) = oo for
all p ¢ P. We can now define our generalized version of an exponential family. Of all
the derivations above for classical families, the final derivation (4.19) lends itself most to
generalization. We employ this strategy, replacing —H with our alternate entropy F'.

Definition 4.9. Let F be a given generalized entropy function, and let statistic ¢ : © — RF
be given. Then a family of distributions Pe = {ps € OF*(¢'0)}gco is a F-generalized
exponential family (F-GEF) with cumulant C(0) = F*(¢'6), where © = dom(C).

Of course, we have not yet shown that indeed Pg C P. To see this, apply Corollary 3.14
toany d € dom(F™); then for allw € W, we have w € 0F] = d € OF,,. Since 0F,, = ()
for w ¢ dom(F'), we must have OF* C dom(F') = P. In particular then, pg € P for all
te€o.

Definition 4.10. The F-GEF {pg}oco is regular if its cumulant C is |.s.c. and proper.

It is a classic result in convex analysis that given convex f and a linear map A, the
function Af = z +— inf{f(y) : Az =y} is convex if f is, and satisfies (Af)* = f*o AT.
We state and prove this result specifically for our setting; see e.g. [95, 103] for more depth.

Lemma 4.7. Let G(v) = inf{F(p) : p € P,E,[¢] = v}. Then G is convex, and
G*(0) = F*(¢'90).
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Proof. Note that R = dom(G) = {E,[¢]|p € P}, by the convention inf (} = co. This R
is convex by convexity of P and linearity of E[¢p]. We first show convexity of G.

Glar +(1—a)r) = inf {F(p): Ep[¢] = ar + (1 - a)r'}
< inf {Flap+(1—a)p) Byl =r, Eyl¢] = '}
< p;r,lefp {aF(p) + (1 = a)F(p') : Eplg] =7, Ep[d] = 7'}
= aG(r) + (1 — a)G(r).
We now compute G* directly.

G*(0) = sup (r,0) — G(r)

reR
=sup (r,0) — inf F
7"67]% < > p:Ep[g]=r (p)

=sup sup (r,0)— F(p)
r€R p:Ey[¢l=r

= sup <p, <Z>T9> — F(p)

peEP
— F*(qﬁTG),

where the penultimate equality follows by <p, ¢T9> = (E,[¢], 8) and by definition of R. [J

Thus, Lemma 4.7 implies that the cumulant C' of an F-GEF is the convex conjugate
of G(v) = inf{F(p) : p € P, Ep[¢] = v}. It is interesting to compare this result to
our review of classical exponential families above; there we had C' = W, and as we saw,
U(0) = (—H)*(¢ "), a result we of course recover by setting F' = —H. We now show a
generalization of another classical result, that V¥(0) = E,,[¢]. Note that because of our
generality, our entropy might not be differentiable in any sense, so we instead fall back on
subgradients.

Proposition 4.8. A regular F-GEF {pg} with statistic ¢ and cumulant C satisfies E,,[¢] €
0Cy for all 0.

Proof. First we prove a small claim:

Claim. Let f: X — R convex and A : X — Y linear, and set g = fo AT,
Then d € 0f(ATy) = Ad € dg(y).

Proof.
- Ve f(x) > F(ATy) + (d.2 ~ ATy)
=Wy f(ATy) > f(ATy) + <d7 ATy — ATy>
= Vy' g(y) > gly) + (Ad,y' —y) .
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Applying this to f = F*, g = C, A : p — Ep[¢] (and thus AT = ¢T) yields p €

OF*(¢70) = E,[¢] € 0C(0), from which the result follows. O
C(0)
C F*
qu
/\
6 q
\/
(6")"
dG dC dF dF*
p
/\
r Do
\_/
E[¢]
G F
G(r)

Figure 4.2: An illustration of the relationship between the various spaces, symbols, and
maps in this section. Here (¢")~! denotes the left inverse of ¢ . Note that the diagram
is not necessarily commutative, though starting from r and 6 it is commutative for the
most part when when F' and F™* are strictly convex and differentiable.

We now see why we are justified in calling C' the cumulant, as it generates the first
moment of the statistic. In fact, in light of Proposition 4.8, we are justified to follow
the classical case and identify each distribution py with its ¢-mean. In this way we may
parametrize Pg (or a subset thereof; see below for discussion) by the means.

Definition 4.11. Given F-GEF Pg = {pg}oco, we define the mean parameters to be
Re = {E,,[¢]}oco, and a mean parameterization of Pg to be a family {p,},cre C Po
such that Vr € Re, Ep, [¢] = r}.

Note that in general, there may be multiple distributions in Pg with the same mean,
and Re may be non-convex. However, by Proposition 4.8, we see that there is a unique
mean parametrization if C' is strictly convex, since E,, [¢] € OC(6) but strict convexity
implies that the sets OC(0) are disjoint. Moreover, if C is continuously differentiable,
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then E,,[¢] € 0C(0) = {VC(0)}, so Re is convex as the range of P under linear map
p — Ep[¢]; in other words, every mean of ¢ is realized in Pg. While uniqueness of the
parametrization and convexity of Rg are certainly desirable properties, our results will not
rely on these assumptions.

We now return to our above discussion and sketch how to derive a GEF {py}o as the
maximum entropy family under a mean constraint. We may define p, € arginf{F(p) : p €
P,Ep[¢] = r}, which when the arginf is nonempty for all r, is a parameterized family of
distributions. But is Pr = {p,}r a mean parameterization of an F’-GEF? As we will see
in the proof of Theorem 4.14, and the discussion thereafter, we may select P such that
¢'dG, € OF(p,), where G is defined as in Lemma 4.7. But then Corollary 3.14 gives
pr € OF*(¢"dG,), which means indeed p, = po(r) for an F-GEF Pe.

Finally, we remark about the relationship between our approach and that of Griinwald
and Dawid [54]. In [54, §7.4], GEFs are defined by the maximum entropy calculation
discussed above, and hence as long as the arginf is nonempty, their results go through.
After defining what we call the mean parametrization, they introduce the “natural” param-
eterization in eq. (53), essentially as the argsup in the calculation of F™*. While in many
senses, the results of [54] hold more generally than ours, we choose instead to restrict
to the l.s.c. and proper setting, so that we may start with the natural parameters, and
use them as our fundamental definition. This allows us to draw closer connections to the
existing theory of exponential families, but as we will see, it also allows us to weave our
results into our greater story involving divergences, scoring rules, and prediction markets.

4.3.1 Divergences

We now apply the above definitions and machinery to show a bijection between generalized
exponential families and generalized Bregman divergences. This investigation is inspired
by Banerjee et al. [16], which shows a similar result for (classical) exponential families.
In fact, our result will in some sense generalize theirs to other entropies besides Shannon
entropy.

Definition 4.12. A generalized Bregman divergence D¢ q¢ for a convex G : V — R is
F-regular for a convex F : P — R if G is proper and |.s.c., and there exists some statistic
¢ : O — R such that

G(v) = inf {F(p) : Ep[¢] = v}. (4.20)

peP

We will also say G itself is F-regular with statistic ¢.

The bijection we will show will tie Bregman divergences to certain equivalence classes
of GEFs, which we now define.

Definition 4.13. The cumulant class of F'-GEFs with cumulant C is the set of F-GEFs
whose cumulant is C.
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Of course, two F'-GEFs with the same cumulant may be very different from one another,
but in some sense the disparity is only with regard to O, not © and R; see the “Overlapping
bijections” discussion below. Note that our definition of regularity, Definition 4.10, really
is a property of the cumulant, and hence naturally applies to cumulant classes; we will say
a cumulant class is regular to mean its cumulant satisfies the same.

Theorem 4.9. Fix entropy function F. The set of F-regular Bregman divergences is in
bijection with the set of regular cumulant classes of F-GEFs.

Proof. Specifically, we will show that each F-regular Bregman divergence D¢ 4¢ yields
the cumulant class of C(0) = G*(#), and as the convex conjugate is invertible, we will
thus establish our bijection.

Let F-regular Bregman divergence D¢ 4 be given, with statistic ¢. Then simply take
the cumulant class of the F-GEF Pg = {pg € OF*(¢'0)}pco, where © = dom(G*). By
Lemma 4.7, we have that the cumulant of Pg is G*. Finally, by regularity of D¢ 4¢ and
Theorem 3.13, we have (G*)** = (G™)* = G, so Peg is regular.

Now, given any cumulant class of regular F-GEFs with cumulant C and statistic ¢,
we take the Bregman divergence with convex function G = C™. Again by regularity and
Theorem 3.13, we have that G is l.s.c. and proper. Also, since G* = C** = (', we have
G*(0) = F*(¢'0), so by Lemma 4.7 we must have G(v) = infy,. g [gj=0 F'(p), meaning G
is F-regular. O

We now try to consider the result of Banerjee et al. [16]. They give a bijection between
a certain class of classical exponential families and a certain class of Bregman divergences,
so to begin we state generalized versions of their conditions. We will use the concept
of Legendre type from convex analysis (cf. [89, §26]) which is the following property of
a set and function pair (X, F): (a) X is nonempty and open, (b) F' is strictly convex
and differentiable on X, and (c) lim, ||V f(z)| = oo for z € X and b € bd(X), the
boundary of X.

Definition 4.14. A F-GEF Pg with cumulant C' is super-regular if it is regular and
additionally © = int(dom(C)) and (©, C) is of Legendre type.

Definition 4.15. A Bregman divergence D¢ is F-super-regular if it is regular and addi-
tionally (int(dom(G)), G) is of Legendre type.

We briefly sketch why these regularity conditions roughly correspond to those of Baner-
jee et al. when FF = —H. Their condition on divergences D¢ is that G = C* for
some strictly convex C' which (after applying a result due to Devinatz) is of the form
C(0) = log [px exp{(z,0)}du(x) for some unique bounded non-negative measure . Of
course, applying Lemma 4.7 and appealing to eq. (4.18), we easily see that —H-super-
regular implies their condition. Exponential family regularity follows much more simply,
as an application of Lemma 1 of Banerjee et al. [16].
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We now state a refinement of Theorem 4.9, for the super-regular case. When F =
—H, and the statistic ¢ is minimal (affinely independent), we obtain essentially the same
bijection as [16]. The proof follows from a classic result of convex analysis, that (X, F) is
of Legendre type if and only if (X*, F™*) is [89, Thm 26.5].

Corollary 4.10. Fix entropy function F'. The set of F-super-regular Bregman divergences
is in bijection with the set of cumulant classes of F-GEFs.

It has been noted that one can express the relative entropy between two members of
a classical exponential family as a divergence between their corresponding parameters [6,
23, 76]. Specifically, one can write

KL(po|lpo) = Dw(',0). (4.21)

We would like to generalize this result to our setting, hopefully to show that the generalized
relative entropy, given by D, can be written analogously. First we prove a useful lemma.

Lemma 4.11. Let regular F-GEF {py} and F-regular G be given, both with statistic ¢.
Then F(pg) = G(E,,[¢]) for all 6.

Proof. By Proposition 4.8, we have E,, [¢] € 0C(6), which by Lemma 3.11 implies that
C*(Ep, [9]) = (Ep,[¢],0) — C(6). By Lemma 4.7, and the fact that G** = G, we have
C* = G. Moreover, (E,,[¢],0) = (pg,¢"0), and C(0) = F*(¢"6), so we now have
G(Ey[9]) = <pg,¢T9> — F*(¢#). Finally, as pyg € OF*(¢"60) by definition, applying
Lemma 3.11 once more yields G(E,, [¢]) = (pg, ¢ 0) — F*(¢'6) = F(pq). O

We now generalize equation (4.21) to F-GEFs.

Proposition 4.12. Let F-GEF {py} be given with cumulant C'. Then there exist subradi-
ents dF and dC' such that for all 6,60’ € ©,

Drar(porspo) = Dcoac(6,6').

Proof. By Lemma 3.11, and the fact that pg € OF*(¢' 0) by definition, we have F*(¢'6) =
(pg,dFp,) — F(pp) for all & € O and any choice of subgradient dF. Thus, selecting
dry,, = quG, we have

Dar(por o) = F(py) = F(po) = (por = p0, 076
= (pors070) = F*(870)) = (ps,0"60) + F*(670)
- <p9' —p9,¢>T9>
= F*(670) = F*(670) + (po, 070/ = 670)
=C(0) - CO) + (Ep, [¢],0' — 0),

where we used Lemma 4.7 in the last step. Finally, by Proposition 4.8 we may select
dCy = E,,[¢], completing the proof. O
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We may also derive a similar result for a mean parameterization.

Proposition 4.13. Let entropy F' be given, and let G be F-regular with statistic ¢, with
G additionally being strictly convex with subgradient dG. Then there exists a subgradient
dF such that for any mean-parametrized F-GEF Pr = {p,},er with statistic ¢, and any
r,r €R,

Drar(pr,pr) = Dgac(r, 1").

Proof. We first show that for any set of distributions {p, }, with (1) E, [¢] = r and (2)
G(r) = F(p,), the result holds with dF,, = ¢'dG,:

DF,dF(p’r’vPT”) = F(pr) - F<pr’) - <pr — Dr/y ¢TdGr>

= G(r) = G() = (Ey, [6] ~ By, [9], dG,)
= Dg.ac(r,7").

Our set Pg trivially satisfies (1); for (2), note that by Definition 4.11 we have some 6(r)
such that p, = py(,). Then by Lemma 4.11, G(r) = G(Ep,,,, [4]) = F(py(r)) = F(pr). O

Propositions 4.13 and 4.12 give life to our bijection in Theorem 4.9. From them we
see that not only are F-GEFs in bijection with divergences, but these divergences exactly
capture the geometry of the GEF, and succinctly so, in terms of their parameters.

Other remarks

The above exploration of generalized exponential families certainly opens more doors than
it closes. It is in particular quite natural to ask, for each succinct quality of classical
exponential families, does a generalization of this quality hold for GEFs? We briefly touch
on a few of these questions and other points.

Sufficiency. It is well known that the statistic ¢ is sufficient for a classical exponential
family, meaning that the likelihood of some data {0;}; depends on the underlying parameter
6 only through the empirical mean of the statistic, specifically i = %ZZ ®(0;). This
property follows directly from eq. (4.13). For an F-GEF, though, this property does
not hold in general, simply because VE*(¢'6), # h(0)g(0,$(0)). Another notion of
sufficiency does hold, however: for any loss function L : R x O — R which is proper for
the map I'(p) = E,[¢], the loss of prediction r depends on the data only through fi. This
follows from Theorem 4.1, simply negating to turn the score into a loss.

Conjugate priors. One of the most useful properties of classical exponential families is
the existence of conjugate priors, families of prior distributions which when conditioned on
data from an exponential family yield a posterior from the same family as the prior. It
is not clear whether analogous families of priors exist for generalized exponential families.
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An interesting direction to explore would be to find a new notion of Bayesian updating
for GEFs which captured the “geometry” of the entropy function F', and then use this
updating to define conjugate priors.

Overlapping bijections. The observant reader will note that there is a complicated
relationship between entropies F' and the possible F-regular convex functions G. In par-
ticular, while it seems clear that the same F yields many different F-regular functions G
by changing ¢, it is not clear whether there exists an F' which can yield all possible G's.
The converse relationship is also interesting: a G can be F-regular for many F's. Hence,
there is a delicate many-many relationship between F' and G. We briefly illustrate with
some examples.

Working with P = A,, for simplicity, take F(p) = ||p||?/2. It is easy to see that
any G which is F-regular must be piecewise-quadratic. (In the regime where p, has all
positive entries, this follows from C(0) = F*(¢"0) = ||¢"0]?/2, so G = C* must also
be quadratic; similar reasoning applies to the nonzero entries once p, hits the edge of
A,.) Hence, even when k = dim(0) << n, G will always be piecewise quadratic when
F=|-|>

Conversely, it is trivial to come up with different functions F' yielding the same G.
The easiest way to do this is to just relabel the ground set O (and ¢ accordingly), so that
F' has changed due to a permutation of the arguments, but the optimization yielding G
remains equivalent. A less superficial method, given any GG and ¢, is to take the function
F(p) = G(Ep[¢]) + f(p—D(Ep[¢])), where p is a continuous inverse of ¢ and f is positive
definite.® Of course, we must restrict to choices of p and f which keep F' convex.

Finally, we point out that, like the quadratic example, taking F' = —H is very restrictive
in terms of the possible functions G that are F-regular. In particular, it is easy to see that
no —H-regular G can be piecewise quadratic: C(f) = log >, €% has nonzero derivatives of
all orders, but C' = G* would have locally quadratic points, with zero derivatives beyond
order 2. Thus, the notion of “regular’ used by Banerjee et al. [16], which essentially
captures “log-exp-convex” functions, excludes a very natural class of convex functions.

4.3.2 Inducing scoring rules

Someone charged with the task of designing a scoring rule & to elicit the mean of some
statistic might naturally wonder whether it suffices to just select a classical scoring rule
S defined on P and use that — that is, can a designer simply induce & from &7?
Specifically, letting T" : p — E,[¢] denote our linear property as usual, it seems natural to
pick an arbitrary p : R — P mapping means r to some p(r) € I'.,” and take

S(r, 0) = &P (p(r), 0). (4.22)

®A function £ is positive definite if £(0) = 0 and f(z) > 0 for all 2 # 0.
"Recall that T, = {p € P : '(p) = r}.
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As we will see, this can be done, but care must be taken in selecting p. Even assuming
that equation (4.22) can be satisfied, other questions remain:

1. Does one lose design flexibility by restricting to scores & of the form (4.22)7
2. Are there multiple choices of &% and p that yield the same &?
3. Fixing &7, what scoring rules & can be obtained by varying p or ¢?

We will answer many of these questions in this section, as well as similar questions for
prediction markets.

To begin, let us see why not all choices of p suffice for (4.22). Working with P = A,,,
take &7 to be the Brier score &7 (p, 0) = 2p, —||p||>. Now for statistic ¢ : 0 +— 1{0 = 1},
the indicator for o = 1, we will try p(r) = [r,1—7,0,...,0] € P, the distribution with mass
ronl, 1—7on 2, and 0 otherwise. Clearly E;)[¢] =7, but given p = [p1,p2,...,pal,
solving

r(p) = argsup &7 (5(r), p) = argsup[|p — H(r)|*, (4.23)

which we can compute by solving 0 = V,.(2p1r + 2pa2(1 — 7) — 72 — (1 — r)?), yields
r(p) = (p1 — p2 +1)/2. But now we see 7(p) # E,[#], and hence &(r, 0) = & (p(r), o)
is not proper! See Figure 4.3 for an illustration.

Figure 4.3: Two 3-outcome examples of ways to choose p which do not yield a proper
scoring rule for I' when &% (p, p) = ||p||>. The horizontal dotted lines depict a selection of
level sets of I'. In (a), an agent with belief p would report 0.7 instead of I'(p) = 0.5. In
(b), the striped region is the set of points p for which the agent would report r = 0.5.

For a more extreme example, one can take p(r) the same as above but with p(1/2) =
[1/2,0,1/2,0,...,0]. As we saw in eq. (4.23), the geometry exhibited by the Brier score
is Euclidean, so clearly any p in a small enough ball around 5(1/2) would prefer r = 1/2
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to the correct report. In fact, as Figure 4.3 shows, the region of points p for which the
agent will report » = 1/2 is the interior of an entire parabolic region of the simplex.

In general, it seems that our choice p must somehow conform to the geometry of
F(p) = &% (p,p). In particular, it must have the property that for all p : E,[¢] = 7, the
“closest” point in {p(r’) : 7' € R} to p is p(r), where distance is measured by G”. In
fact, there are interesting connections to information geometry (cf. Amari [6]), where one
may view p as a kind of geodesic, though we do not explore this further here.

We now address the central question: given a linear property I' : p — E,[¢], can
one induce a I'-proper scoring rule & from a classical &% : P x O — R? The following
result answers this in the affirmative, and also addresses some of our other questions.
Before stating the result, we introduce two simple concepts. The first is the Bayes risk
from decision theory, which roughly speaking is the score corresponding to the worst-case
underlying distribution consistent with the report . The second is a technical condition
which ensures that our mean parameterizations have no “holes.” We will also again use
the notion of a fair scoring rule; see Definition 4.4,

Definition 4.16. The Bayes risk of scoring rule G : R x O — R with respect to property
I' is defined by Risk(&) = (r — infper, &(r,p)).

Definition 4.17. A convex function F' is I'-bounded for a property I if F' achieves its lower
bound on T',. for all v € relint(R). That is, if for all v € relint(R), arginf . F(p) # 0.

In the following theorem, we say “G is F-regular on S" to mean there exists I' : p —
E,[¢] such that G(r) = infyer, F(p) for all r € S.

Theorem 4.14. Let T : p — E,[¢] be a linear map, and let T'-fair, I'-proper scoring rule
S : R x O — R and convex function F' : P — R be given. Then there exists a proper
scoring rule &% : P x O — R and a function p : relint(R) — P such that

Fop=id, RISk(GP) = F, and Gp(ﬁ()a ) =(relint(R),P) 6(7 ) (424)
if and only if F is T-bounded and Risk(&) is F-regular on relint(R).8

Proof. For shorthand, let G = Risk(&). Fixing r € relint(R), Theorem 4.1 and fairness
imply &(r,p) = G(r) + (I'(p) — r,dG,), so in particular &(r,p) = G(r) for all p € T,..

For the “only if” direction let p and &% be given satisfying condition (4.24), and note
that we must have F(p) = &7 (p,p). Then we have

Vi € relint(R), F(p(r)) = 67 (3(r), p(r)) = &(r, p(r)) = G(r).
Now fix r € relint(R), p € I',. Again by fairness and by definition of p, we have

F(p) =6&"(p,p) > &"(p(r),p) = &(r,p) = G(r) = F(p(r)),

8Here implicitly T'(p) = p for the Bayes risk computation.
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which implies G(r) = infper, F(p) on relint(R) as desired. Finally, since p achieves the
infimum, F' must be I'-bounded as well.

For the “if" direction, as F' is I'-bounded, for all r € relint(R) we may take p(r) €
arginf,cp F'(p); this choice trivially satisfies I'op = id. Since G is F-regular on relint(R),
we must in particular have G(r) = F(p(r)). By Theorem 2.1, we may take &% (p,p) =
F(p), which fully specifies &% up to a choice of subgradient dF. To do this, for each
7 € relint(R) we take dFj, = ¢ "dG, (the other subgradients may be chosen arbitrarily),
though we must first show that this is indeed a subgradient at p(r).

By Lemma 4.7, we have G*(d) = F*(¢'d). Also, (r,d) — G(r) = (p(r),¢"d) —
F(p(r)). Hence, applying Lemma 3.11 for G and F™*, we have

d € dG(r) < G*(d) = (r,d) — G(r)
= F("d) = (p(r), 6" d) - F(p(r))
> ¢'d e IF(p(r)),

so in particular, dFy(,) € ¢! dG, € OF (p(r)). Finally, we show that p does in fact induce
& from &7 for all r € relint(R):

&”(p(r), o)

F(p(r)) + dFyy(0) — dFy (B(r))
= G(r) + (¢(0),dGy) — (I'(p ( ), dGr)
S(r,0). O

Theorem 4.14 gives precise conditions under which a score may be induced from an-
other. The condition (4.24) is just expressing that  induces & from &7, with the addi-
tional assumption that p be calibrated, meaning p(r) must itself be consistent with report
r,i.e. I'(p(r)) = r. It is an interesting question whether this calibration property is a
consequence of inducing &, or whether there are choices p which are not consistent in this
way.

Note that the fairness assumption above is merely for convenience and is essentially
without loss of generality. We could just have easily asked when &7 (p(-),-) = &,° as the
answer would be exactly the same, except that we would replace Risk(&) with the Bayes
risk of a fair score equivalent to &.

The proof of Theorem 4.14 reveals something surprising — p is a generalized expo-
nential family! To see this, note that we took p(r) such that ¢'dG, € OF(p(r)), but by
Corollary 3.14, this implies p(r) € OF*(¢'dG,), so p is a mean parameterization of an F-
GEF. Hence, under our calibration assumption, GEFs are the unique family of distributions
which induce scoring rules for means from classical scoring rules.

Another way to look at this is that every scoring rule for a linear property can be
thought of as a scoring rule for a F'-GEF for some other entropy F'. To see this, just take

°Recall that scores are equivalent if their difference is a function solely of the observed outcome, and
not the report.
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F(p) = G(I'(p)), which is convex. Hence we have actually answered question 1 above:
the designer loses no flexibility by inducing scores rather than “starting from scratch.”

We now briefly address questions 2 and 3, by appealing to the “overlapping bijections”
discussion at end of §4.3.1. In particular, the answer to question 2 is ‘“yes’, as any
G is F-regular for F' : p — G(Ep[¢]), while the answer to 3 is more complicated. In
general, there is no succinct characterization of the different G = Risk(&) that are F-
regular, except for specific cases (like “log-exp-concave” for negative Shannon entropy, and
piecewise quadratic for || - [|2). However, the many-many relationship between F' and G
from §4.3.1 transfers to the same relationship between scoring rules which can be induced
from classical scoring rules.

Figure 4.4: A 3-outcome example of a nonlinear I' for which the maximum entropy p fails
to induce a proper scoring rule. Recall any point on the circle with diameter wzg forms a
right angle with v and g, meaning it is the closest point to u on the ray out of zg; this
explains the peculiar form of p shown.

Finally, it may seem that this technique of taking p(r) € arginf {F'(p) : p € I';.} gen-
eralizes to potentially nonlinear properties — could this method of inducing scores provide
an answer to the questions posed in §3.4.3 and show how to elicit nonlinear properties?
As it turns out, this does not work in general. As a counter-example, take P = Ag,
and define I'(p) = (p — xo) - (u — x0)/||p — xo||, where z¢g = [—¢, (1 —€)/2,(1 — €)/2]
and u = [1/3,1/3,1/3] is the uniform distribution. Now take F(p) = ||p||?>. Then when
p=10,1/2.1/2], it is easy to see that F(p(r)) + VE(p(r)(p—p(r)) = [pl]2 —lp—p(r)]?
is locally increasing in r when moving away from T'(p), since the error is measured by
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Euclidean distance, and the selections p are moving closer to p — indeed, as we see in
Figure 4.4, they almost reach p when € is small.

Inducing prediction markets
We now turn to prediction markets, and ask similar questions here:

1. Can one run an incomplete market mechanism 3 using a complete market 37?
2. Does the market designer lose flexibility by doing so?

3. In such a scheme, what will be the price space of 7?

Not surprisingly, in light of Theorem 4.3, our answers are very similar. First, we answer
(1) in the affirmative, which as in the scoring rules setting, also answers (2) in the negative.

Theorem 4.15. Let C : V* — R and B : W* — R be given convex, l.s.c., and proper
functions, and define B7 (w*, 0) = w*(0) — B(w*) and P(v*, 0) = {¢(0),v*) — C(v*).
Then there is some G : V* — W* such that B(-,-) = B (4(-),-) if and only if C* is
B*-regular for statistic ¢.

Proof. We observe that the condition B(-,-) = BF(G(-),-) breaks into two: (a) Yo € O
G(v*)(0) = (p(0),v*), and (b) C(v*) = B(4(v*)). Condition (a) is equivalent to §(v*) =
¢ v* by definition. Using this, we can reduce (b) to C(v*) = B(¢'v*). Now letting
6 = v*, we can apply Lemma 4.7, and as has been argued previously (since the Fenchel-
Moreau theorem holds under our assumptions), we see that (b) is equivalent to C* being
B*-regular. O

While the proof of Theorem 4.15 does not mention GEFs explicitly, we can tease them
out just as we did for Theorem 4.14. The trick lies in the answer to question (3): what is
the price space for 37?7 We define this as 9B, but we are interested in the possible prices
attained by varying v*, namely |J, .o+ 0B(4(v*)) = Upey OF*(¢70), where F = B*.
Hence, if we pick a price py corresponding to each 6, the prices form an F-GEF! In
particular, if F* is differentiable, the prices will be unique (often a desirable property for a
prediction market mechanism in its own right), and will correspond to a unique F-GEF.

This latter observation deserves attention. When an incomplete prediction market
P is induced from a complete one B7, the prices are constrained to be a generalized
exponential family, where the statistic ¢ is determined by, and indeed the same as, the
payoff function of market 3. Hence, traders with beliefs about the mean of the payoff
function ¢ place bets in the market in exactly the same way as if they were betting directly
on the outcomes, but with the prices constrained to a particular GEF. In particular, when
B7 is LMSR, the most widely-used automated prediction market mechanism (see (1.5)
and §1.2.2), agents are essentially trading on the mean parameters of classical exponential
families! Furthermore, any prediction market with C' = G* for a (—H)-regular G (or a G
which is regular in the sense of Banerjee et al. [16]) can be expressed as an instance of
LMSR in this way.
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4.4 Discussion

We have just completed a winding tour through four seemingly unrelated concepts, and
shown strong connections among them. To summarize what we have found, we give
in Table 4.1 an overview of the rough conceptual or semantic relationships behind the
bijections of Figure 4.1. It is especially interesting to correlate these relationships (and
assumptions) with Figure 4.1, and in particular when a bijection crosses the duality line
and when it does not.

Bijection Semantic relationship Assumptions
DIV « SR . .
Thim 4 15 A SR can be written as a DIV and vice versa. (none)
m 4.

PM <« SR Trades in a PM yield the same payoff as a SR of the

. : VGriry, G**
Cor 4.5 corresponding prices. 7

PM <« DIV Trades in a PM have net expected payoff equal to a

. . . . VGir), G
Cor 4.6 divergence of their corresponding prices. )

DIV + GEF The generalized relative entropy of two members of a  (-,-), F**, G**,
Thm 4.9 GEF is a DIV of their corresponding parameters. (G str cvx)

SR « GEF Any SR for the mean of a statistic can be written as  (-,-), F**, G**,
Thm 4.14 a full-distribution SR applied to GEFs. F T-bdd

PM <« GEF Payoffs in an incomplete market are identical to a com-

) . F**y G**, .
Thm 4.15 plete market whose prices are restricted to a GEF. £

Table 4.1: The conceptual relationships between the four constructs presented in this
chapter: generalized Bregman divergences (DIV), scoring rules (SR), prediction markets
(PM), and generalized exponential families (GEF). All results assume that P is convex.
For the other assumptions: V,;z)G denotes the condition presented in Corollary 4.5; f**
denotes the requirement that f be proper and l.s.c.; (-, -) means the result requires a dual
pair; and F' I'-bdd refers to the I'-boundedness assumption, that F' attains its lower bound
on I, for all 7 € relint(R). For DIV <+ GEF, only the mean parameterization requires G
to be strictly convex.

Many observations can be made from this new vantage point. For example, it is clear
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from the assumptions needed (noting also that several are necessary in some respect) that
the connection between scoring rules and divergences is the most fundamental; it is safe
to say that these are essentially different representations of the same object.

More abstractly, though, it is clear that the driver behind nearly all of these results, and
especially the more surprising ones, is convex duality. The functions G and C' represent
two sides of the same coin, but often our intuition is hesitant to flip from one side to
another. This is perhaps especially true of the relationship between prediction markets and
generalized exponential families — why should the prices be so structured when using a
complete market to emulate an incomplete one?

Rather than enumerate further observations, we conclude our tour with another tour,
to illustrate our newfound connections. Given an incomplete prediction market 3 with
payoff function ¢, we have found that we can induce 3 from a complete market B with
cost function B exactly when the prices in 37 form a B*-GEF Pg for statistic ¢. We may
move from P to a scoring rule & which is mutually reducible to 3, which happens to be
proper for the property I'(p) = E,[¢], the mean of random variable ¢. Asking the same
question of induction for & gives rise to the mean parameterization of the very same GEF
Ps.

If we wish to measure the “distance” between beliefs or prices p in &% or PP, using
generalized relative entropy, or the “regret” faced by agents with one belief who act as
if they had another, the answer can be expressed as a generalized Bregman divergence
between the parameters, which are the reports and prices of G and ‘B3, respectively. Finally,
to come full circle, we may in turn take these simple divergences and reconstruct the original
prediction market 3, scoring rule &, and B*-GEF Pg.

We close with a look toward the future. Though comprehensive in a sense, our results
beg the question particularly of generalized exponential families, as to how much of the
extensive body of literature for classical families might extend to the general setting.
Such extensions would immediately apply to the other three concepts discussed here. For
example, we conjecture that the right notion of “generalized Bayesian updating” may yield
a version of Vovk's aggregating algorithm for other entropies, perhaps shedding light on
the theory of mixability in online learning.
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Chapter 5

A new view of mechanism design

In this chapter, we apply our characterization results to mechanism design. As we will
see, by viewing mechanisms in terms of convex analysis, we are able to make new insights,
which either simplify or clarify existing results, or add new techniques.

We first examine a number of characterizations from the mechanism design literature
that generally focus on when there exist payments that make a given allocation rule truth-
ful. Figure 5.1 (a) illustrates these characterizations and how they were proved. As it
shows, several of them rely on showing equivalence to a condition known as cyclic mono-
tonicity. Instead, we translate these results into convex analysis terms and prove them by
showing equivalence to the condition of being a family of subgradients of a convex func-
tion; see Figure 5.1 (b). This has two main benefits. First, since cyclic monotonicity is a
difficult condition to work with, we are able to greatly simplify the proofs of these results.
Second, our proofs generally proceed by explicitly constructing the convex function, which
gives a natural characterization of the payments rather than just showing that they exist.
This approach also illuminates how a result by Carroll [28] about truthful mechanisms is
essentially a similar characterization (see Theorem 5.3).

We then combine these results with our results about properties from Chapter 3, to
obtain new truthfulness checks for the case where there are finitely many outcomes. Finally,
we conclude with remarks about revenue equivalence and future work.

5.1 Implementability conditions via convexity

Interpreted in the general mechanism design framework given by Definition 2.3, Theo-
rem 2.1 says that a mechanism (f,p) is truthful if and only if the consumer surplus
function t — U(t,t) that it implicitly defines on the convex hull of 7 is a convex func-
tion which has a subgradient consistent with f on 7. This is a known characterization
for the case of convex 7 (as well as non-convex 7 that satisfy an assumption known as
outcome compactness) [7], but in practice the consumer surplus function is not always
the most natural representation of a mechanism. In this section, we examine two other
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’ Implementable

Rochet [8/ \/Iyerson [72]

Mller et al. [73/ \rcher Kleinberg [7]*

(a) (WMON +PI ) (LWMON + VF

’ Implementable ‘

Thm 2.1

Weak Local Thm 5 3*
Subgradient Subgradlent CMON
Thm 5. / \or 5.5%

(b) (WMON + PI ) (LWMON + VF )

Figure 5.1: Proof structure of existing mechanism design literature (a), and the new proof
structure presented in this dissertation (b). Rounded rectangles and asterisks denote the
requirement that 7 be convex.

approaches to characterizing truthful mechanisms that have been explored in the literature
and show that they have insightful interpretations in convex analysis. This interpretation
has two benefits. First, by focusing on the essential convex analysis questions we are able
to greatly simplify many of the proofs. Second, our proofs are constructive; in many cases
we explicitly construct a consumer surplus function G, which when the mechanism is being
represented by its allocation rule gives the necessary payments rather than simply providing
a proof that payments exist.

5.1.1 Subgradient characterizations

From an algorithmic perspective, it may be more natural to focus on the design of the
allocation rule f rather than the specific payments. There is a large literature that focuses
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on when there exists a choice of payments p to make f into a truthful mechanism (e.g.
[91, 8]). Since such payments exist if and only if there is a convex function for which f
is a subgradient at points in 7T, this is essentially a very natural convex analysis question:
when is a function f a subgradient of a convex function? Unsurprisingly, the central result
in the literature is closely connected to convex analysis.

Definition 5.1. A family {dG; € Lin(V — R)};c satisfies cyclic monotonicity (CMON)
if for all finite sets {to,...,tx} C T,

k
D dGy,(tipr — i) <0, (5.1)
=0

where indices are taken modulo k + 1. We refer to the weaker condition that (5.1) hold
for all pairs {to,t1} as weak monotonicity (WMON).

A well known characterization from convex analysis is that a function f defined on a
convex set is a subgradient of a convex function on that set iff it satisfies CMON [89].
Rochet’s [86] proof that such payments exist on a possibly non-convex T iff f satisfies
CMON is effectively a proof of the following generalization of this theorem.

Theorem 5.1. A family {dG; € Lin(V — R)}ie7 satisfies CMON if and only if there
exists a convex G : conv(T) — R such that dG; is a subgradient of G at't for allt € T.

Rochet notes that his proof is adapted from the one given in Rockafellar's text [89]
of the weaker theorem where 7 is restricted to be convex. We adapt Rochet's proof to
highlight how its core is a construction of G. .

Proof. Given such a G, by (2.2) we have dGy,(tiv1 — ti) < G(ti+1) — G(t;). Summing
gives (5.1). Given such a family {dG;}ic7, fix some tg € T and define

k
Gt)=  sup Y dGy(tis1 —ti), (5.2)
{t1,te+1}CT, 529
typ1=t
where {t1,...,t} denotes any finite sequence (k is not fixed).

By CMON, for ¢t € T this sum is upper bounded by —dG(to—t). Thus, the supremum
is finite on 7. G is a pointwise supremum of convex functions, so is convex. By convexity,
G is also finite on conv(T).
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For any t € T and t' € conv(T),

k
G(t) +dGy(t —t) =dGy(t' —t)+  sup > dGy(tiy1 — ti)

{t1,tet1}CT, 2
tpy1=t

= sup Zthz (tiv1 —ti)
{t1,.. ,tk+1}CT, i—0
tp=t, tpy1= t/

k
< sup Z dGy,(tis1 —t;)
{t1,.. 7tk+1}CT7 i—0
tpy1= t/

=G(t),
so dG satisfies (2.2). O

A number of papers have sought simpler and more natural conditions than CMON that
are necessary and sufficient in special cases, e.g. [91, 7, 8]. These results are typically proven
by showing they are equivalent to CMON. However, it is much more natural to directly
construct the relevant G. This also often has the advantage of providing a characterization
of the payments that is more intuitive than the supremum in Rochet’s construction. As
an example, we show one such result has a simple proof using our framework.

As in Myerson's [72] construction for the single-parameter case, we construct a G by
integrating over dGy. In particular, for any two types x and y our construction makes use
of the line integral

1
dG(y — z)dt = / dG (1—t)gtty(y — T)dL.
ny 0
As Berger et al. [20] and Ashlagi et al. [8] observed, if {dG}}ic7 satisfies WMON and T
is convex, this (Riemann) integral is well defined because it is the integral of a monotone
function. If these line integrals vanish around all triangles (equivalently szy dG(y—x)dt+

fLyz dGi(z —y)dt = [, _dGi(z — x)dt)) we say {dG}} satisfies path independence.

Theorem 5.2 (adapted from [73]). For convex T, a family {dG; € Lin(V — R)}er
is a subgradient of a convex function if and only if {dG;}ic7 satisfies WMON and path
independence.

Proof. Given a convex function G and {dG:}, {dG;} satisfies CMON and thus WMON.
Path independence also follows from convexity (Rockafellar [89] p. 232). Now given
a {th} that satisfies WMON and path independence, fix a type tg € T and define

fL dG(t' — to)dt (well defined by WMON as the integral of a monotone
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function). Given z,y,z € T such that z = Ax 4+ (1 — \)y, by path independence and the
linearity of dG, we have

AG(z) + (1 —N)G(y)
=G(z)+ )\/ dGi(x — z)dt + (1 — )\)/ dGi(y — z)dt

zxT Lzy

> G(z) + MGy (x — 2) + (1 = N)dG,(y — z) = G(2),

so G is convex. Similarly, for z,y € T, dG, satisfies (2.2) because

dG(y —z) < : dG(y — z)dt = G(y) — G(x). O

5.1.2 Local conditions

In many settings, it is natural to specify mechanisms in terms of an algorithm that computes
the allocation and payment. As it is often easier to reason about the behavior of algorithms
given small changes to their input rather than arbitrary changes, several authors have
sought to characterize truthful mechanisms using local conditions [7, 20, 28].

We show in this section how many of these results are in essence a consequence of a
more fundamental statement, that convexity is an inherently local property. For example,
in the twice differentiable case it can be verified by determining whether the Hessian is
positive semidefinite at each point. We start with a local convexity result, and use it to
show that an affine score is truthful if and only if it satisfies a very weak local truthfulness
property introduced by Carroll [28]. Afterwards we turn to a similar characterization by
Archer and Kleinberg [7].

Definition 5.2. Given a function G, a family {dG; € Lin(V — R)};c7 is a weak local
subgradient with respect to G (G-WLSG) if for allt € T there exists an open neighborhood
U, of t such that for all t' € Uy,

Gt)>Gt)+dGu(t—t) and G(t') > G(t)+dG(t —t). (5.3)

We now show that G-WLSG is a sufficient condition for a family of functions to be a
subgradient of G. The proof is heavily inspired by Carroll [28].

Theorem 5.3. Let T be convex. A family {dG; € Lin(V — R},e7 is a subgradient of a
given function G if and only if it satisfies G-WLSG.

(Adapted from [28]). As usual, the forward direction is trivial. For the other, let t,t' € T
be given; we show that the subgradient inequality for dGy holds at t. By compactness of
conv({t,t'}), we have a finite set t; = a;t’ + (1 — a;)t, where 0 = ap < -+ < agy1 = 1,
such that G-WLSG holds between each ¢; and t;11. (The cover {Us| s € conv({t,t'}) has
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a finite subcover. Take t; from the subcover and t9;41 € Uz, N Uy,,,,.) By the WLSG
condition (5.3), we have for each 1,

0> G(tit1) — G(t:) +dGy,, (ti — tiy1)
0> G(tz) — G(tzurl) + thi (tz+1 — ti).

Now using the identity t; 11 —t; = (@11 —«;)(t' —t) and adding a; /(41 — ;) times (5.4)
to ait1/(ait1 — ;) times (5.5), we have

0> G(t;i) — G(tig1) + adGy, (t' — t) — iy1dGy,,, (T — ). (5.6)
Summing (5.6) over 0 < i < k gives

0> G(to) — G(tgs1) + andGey(t' — t) — a1dGy, ,, (' — 1),
which when recalling our definitions for o; and t; yields the result. O

The WLSG condition translates to an analogous notion in terms of truthfulness, weak
local truthfulness.

Definition 5.3. An affine score is weakly locally truthful if for all t € T there exists some
open neighborhood Uy of t, such that truthfulness holds between t and every t' € Uy, and
vice versa. That is,

Vte T, Vi elU, SH)t) <S(t)(t) and S(t)(t') < SH) (). (5.7)

Corollary 5.4 (Generalization of Carroll [28]). An affine score S : T — A for convex T is
truthful if and only if it is weakly locally truthful.

Proof. Defining G(t) = S(t)(t), by weak local truthfulness we may write

G(t) = S@)(t) = S{t')(t) = G(t') + Se(t)(t — 1)
G(t') = SE)(H) = S@() = G(t) + Se()(t' - 1),

where t is local to ¢ and Sy(-) is the linear part of S(-). This says that dG; = Sy(t)
satisfies G-WLSG; the rest follows from Theorem 5.3 and Theorem 2.1. O]

Finally, in the spirit of Section 5.1.1, Archer and Kleinberg [7] characterized local
conditions under which an allocation rule can be made truthful. A key condition from
their paper is vortex-freeness, which is a condition they show to be equivalent to local
path independence. The other condition, local WMON, means that WMON holds in
some neighborhood around each type. Their result follows directly from an analogous
characterization of subgradients.

Corollary 5.5. Let T be convex. A family {dG; € Lin(V — R)},c1 is a subgradient of a
convex function if and only if it satisfies local WMON and is vortex-free.
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Proof. We prove the reverse direction; suppose {dG}}ic7 satisfies local WMON and is
vortex-free. From Lemma 3.5 of [7] we have that vortex-freeness is equivalent to path
independence, so by Theorem 5.2 for all ¢ there exists some open U; such that {dGy }v ey,
is the subgradient of some convex function G) : U; — R. We need only show the
existence of some G such that {dG;}.c is the subgradient of G on each Uy; the rest
follows from Theorem 5.3.

Fix some ty € T and define G(t fL dGydt', which is well defined by compactness

of conv({to,t}) and the fact that a IocaIIy increasing real-valued function is increasing.
But for each ¢’ and ¢ € Uy we can also write G fL thudt” by [89, p. 232], and

now by path independence we see that G and G(t) dlffer by a constant. Hence {dG\}ier
must be a subgradient of G on Uy as well, for all ¢/ € T. O

5.2 Properties in mechanism design

In the case when R is finite, we can combine Theorem 3.17 and Corollary 5.4 to obtain
the following simple truthfulness check. This essentially says that one need only check
overlapping report regions for r and 7’ (i.e. r and 7’ are both correct reports for some type
t) to make sure that any type with r correct and r’ incorrect yields a lower utility for 7/
than r.

Theorem 5.6. For finite R, an affine score S : R — A elicits T if and only if for all v, 1’
such that T', N Ty # 0, we have S(r')(t) < S(r)(t) forallt € T, \ Ty,

We now apply our results to mechanism design with a finite set of allocations. One
example of such a setting is ordinal utilities over a finite set of outcomes. Let 7 = (O — R)
and let R be the set of preference orderings over O, which we represent as permutations
7 of O (higher preference being first). Then a natural property is

I'(t)={mr e R|Vi<yj, t(m) < t(m;)}, (5.8)

the set of rankings consistent with type . Note that unless there are ties, meaning
t(0) = t(0') for some 0,0’ € O, this mapping will be a singleton. More generally, truncated
rankings or any mechanism with a finite message space yields such a property.

Carroll [28] points out that it is known that for all finite sets of allocations, the set
of types for which a particular allocation is optimal forms a polyhedron and then shows
that for all convex set of types it is sufficient to check incentive compatibility constraints
between polyhedra that intersect at a face. Applying Theorem 3.17 shows something
stronger: the types form not just an arbitrary set of polyhedra, but a power diagram. This
observation yields the following non-implementability check.

Power diagram test:  The sets cell, := {t|f(t) = o} form a power diagram.  (5.9)

Thus, if (5.9) fails, f is not implementable.



To illustrate this test, consider the following two allocation functions.

if t, <2 and t, <2
if t, > 2 and t;, < 2
if t, <2andt,>2
if to >2and t, > 2

if tg <2

ift, >2and t, <2
if t, > 2 and t > 2
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(5.10)

(5.11)

As Figure 5.2 shows, f1 satisfies (5.9), as it partitions the type space 7 = R? into a
power diagram; just take sites P = {(1,1),(1,3),(3,1),(3,3)} and weights w; = —||p;| /2.
Moreover, f!isimplementable. The allocation function f2, however, fails the test: no finite
site exists for the cell {t|t, < 2}, since adjacent cell boundaries are perpendicular to the
line between their sites. Hence we can immediately conclude that £? is not implementable,
and in fact any allocation function which partitions the type space in the same way (i.e.
uses the same cases in (5.11) with different values) would fail to be implementable.

{b}

{a,b}

{}

{a}

t,—

(1)

X

{}

{a,b}

{a}

t,——

(2)

Figure 5.2: A mechanism that passes the power diagram test (1) and one that fails (2).

We can now see why polyhedral type spaces are too weak: the allocation function
f? is not implementable, yet clearly has a polyhedral type space. The power diagram
condition (5.9), then, is a stronger necessary condition for truthfulness. Note however
that it is not sufficient, as the power diagram test is not sensitive to the actual allocations
chosen — just swap {a} and {a, b} for f1, and the resulting allocation function still passes
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the test but is no longer implementable. In is true, though, that every power diagram is
the type space for some implementable allocation function.

It remains to show how the test (5.9) can be implemented. In fact, we have already
discussed this in §3.4.1; recall that for the simple case, Aurenhammer gives an algorithm
to detect whether a set C' of cells form a power diagram in §2.2 of [10], which runs in
time O(m), where m is the number of facets (cell faces of dimension n — 1, where n is
the number of outcomes). For the general case we may use the polynomial-time algorithm
given by Rybnikov in [90, §12].

5.3 Revenue equivalence

Perhaps the most celebrated result in auction theory is the revenue equivalence theorem,
which states that, in a single item auction, the revenue from an agent (equivalently that
agent’'s consumer surplus) is determined up to a constant by the equilibrium probability
that each possible type of that agent will receive the item [72]. A large body of work has
looked for more general conditions under which this property holds (see, e.g., [61, 57]).
Many of these conditions imply the convexity of the set of types. Our main result can be
used to provide intuition for this.

Theorem 5.7. Let T be convex, a truthful affine score S : T — A be given, and {dG}eT
be the corresponding selection of subgradients from (2.3). Then any truthful affine score

S" T — A with the same corresponding selection of subgradients differs from S by a
constant (i.e. S(t')(t) = S'(t')(t) + ¢).

Proof. By Theorem 2.1, we know that S and S’ only differ only in their choice of convex
function G. However, each choice has the same selection of subgradients, and two convex
functions with the same selection of subgradents differ by a constant [89]. For intuition,
see the construction of GG by integrating its subgradients in the proof of Theorem 5.2. [

Note how the convexity of 7 is crucial here. Theorem 2.1 requires the existence a
convex G on conv(T). If T is not convex, there may exist convex G and G’ that share
the same selection of subgradients on 7 but differ on conv(7) — 7T, in which case they
need not be revenue equivalent. The following example from [57] is illustrative.

There is an agent who has some demand d for a good. If he receives x units of the
good his utility is ug(z) = min(0, z — d): he has a utility of 0 when he receives at least d
units and z — d < 0 otherwise. Even if the set of possible values of d is a convex set, say
[0, 1], this type space T = {uq4(z)|0 < d < 1} is not convex in our sense — for example,
(uo.3 +u0a)/2¢ T,

Consider a mechanism that gives the agent exactly his demand d, i.e. f(ug) = d. One
way to extend this onto the convex hull of the type space is to have the mechanism give
the agent the minimum amount of the good this is needed for him to have a utility of 0,
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namely f1(3" ayug,) = max{d;}. Note that crucially f!|; = f. With f! the payment
p!(x) the agent makes is constant regardless of his allocation.!

An alternate way to extend this onto the convex hull is to set a schedule of prices such
that an agent given z units of the good pays p?(z) = x + ¢ and then give an agent of type
v =Y a;ug, his optimal amount of the good (breaking ties in favor of giving more of the
good): f%(v) = max(argmax,{v(z) — (¥ + ¢)}). Despite once again having f?|T = f,
the payment of an agent with type v = ug is now p?(d) = d + ¢, which depends on the
demand and hence is not p'(d) = c. Thus, revenue equivalence does not hold for our
original allocation rule f on T.

In our example, there were several different ways to extend the allocation onto the
convex hull of the type space such that the mechanism was implementable, so the mecha-
nism did not satisfy revenue equivalence. Clearly convexity of 7 is a sufficient condition to
ensure that there is a unique extension onto conv(7 ), but it is not a necessary one; Hey-
denreich et al. give several examples of conditions on allocation rules for this example that
ensure they do satisfy revenue equivalence. Even having a unique extension is actually suf-
ficient but not necessary. In particular, if some type ¢ € conv(7T) — T is indifferent among
several outcomes, it may be possible to change that type's allocation without changing
the resulting G. In terms of convex analysis, this is because, under mild conditions, a

convex function can be represented up to a constant by any selection of its subgradients
(see [61]).

5.4 Future work

Below we detail several possible avenues for future work.

Multi-agent settings. The reader may note that thus far we have considered only single-
agent mechanisms. As we argued in §2.3.1, this is in some sense without loss of generality,
but in practice many constraints on mechanisms are crucially interdependent among agents;
e.g. a single item which can only be given to one agent, or a combinatorial auction with
nontrivial feasibility constraints. To have bite in such settings, we will have to extend our
model and characterizations explicitly.

One way to extend the model is as follows. We have type spaces 7; for each agent,
and joint type space 7 = ®7;. The affine spaces are A; C Aff(7; — R) with A C ®A,;.
Finally, the utility of agent i with type t; upon reports ¢’ is 2A(¢')(t); = A(t")i(t;).

While it is common in mechanism design to think of a single outcome being chosen,
thus dictating the utilities of all agents, here the mechanism would seem to have more
flexibility, in choosing a; € A; more or less independently of j # i. However, note that
by being a subset of the cartesian product, A can encode constraints of the mechanism.

1 An agent of type ug can always report that he is of type (1 — ¢)uo + euq. This type has an arbitarily
small value for receiving the good, but still receives d units according to f*.
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In particular, A could be the set of utilities {a;,}c[,) corresponding to each outcome of
some set O, thus reducing to the common mechanism design case.

One of the most important results in mechanism design is Roberts’ theorem, which says
that for an unrestricted type space (i.e. 7 = R’} for n agents), the only implementable
allocation functions are affine maximizers, taking the following form:

f(t) € argmax Zwiti(o) + Co, (5.12)
€0

for some weights w; and constants C,. This is often viewed as an impossibility result,
but it is known that as one restricts the type space, other possibilities arise in the form of
f- Naturally, then, recent research has strived to characterize the form of implementable
functions in restricted domains. As a first step in this vein, many new proofs of Roberts’
theorem have appeared (see e.g. [68, 67, 41]) with an eye toward modularity, in the hopes
that the right techniques would extend more easily into restricted domains. Our hope is
that the general convexity-driven approach taken in this dissertation would help in this
regard; we have already seen that our techniques greatly simplify the single-agent case,
and given that a truthful multi-agent mechanism yields a truthful mechanism when fixing
n — 1 of the agents’ types, it seems likely that these techniques could be used to simplify
or extend existing multi-agent characterizations.

Beyond mechanism design, other multi-agent elicitation models have appeared in the
literature, most notably “wagering mechanisms” from Lambert et al. [64], which in essence
are multi-agent scoring rules. In the setting they analyze, the mechanism is constrained
to ensure that for some budget B, the total payout is exactly B no matter what outcome
w materializes. One could view such a mechanism as an affine score, setting A; C {t; —
Epnt;[si] | si € R?}. Note that this in some sense corresponds to a “transfer-free”
mechanism, as A4; is actually a set of linear functions, so the affine term (the “payment”)
is 0. Such multi-agent scoring rules only become interesting when the mechanism has
constraints among the agents; in this case, the budget constraint requires > . s; = B for
all outcomes w € (.

Envy-free mechanisms and other externalities. In several settings in mechanism de-
sign, one is conerned with agent utilities which depend not only on the chosen allocation,
but possibly on the types of the other agents. For example, when participating in an
auction for a nuclear weapon, my utility may depend on who gets the weapon, and their
value for it. Note however that we have constructed A so that (') (¢); depends only on ¢/
and t; (the true type of agent 7). Thus, to capture these interdependencies among types,
we may simply lift our restriction on A by requiring only A C Aff(7 — R™). This would
cover settings such as envy-free mechanisms, as well as other types of externalities, such
as those in Fiat et al. [45]. Given how natural it is to express these settings in our model,
it seems promising to apply our techniques here as well.
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Revenue equivalence. Recently results have emerged characterizing revenue equiva-
lence, specifically, on which domains it does and does not hold; see e.g. [57]. Given the
discussion in §5.3, it is likely that our approach would be more direct, yielding shorter or
more constructive proofs.

Properties. Our exploration of properties in mechanism design has just scratched the
surface. One promising direction is to draw connections to existing notions in mechanism
design which seem to bear some resemblence to properties, such as multidimensional
screening (see e.g. [87]). Another is to use the power diagram test (5.9) and other insights
to derive new negative results for multi-agent settings — in fact, one could regard Hyafil
and Boutilier [58] as a prelude to this general approach. Finally, Saks and Yu [91] proved
that all monotone deterministic allocation rules are implementable when the type space is
convex and the number of outcomes is finite; it may be that our approach using finite-
valued properties will yield a simpler and more intuitive proof of this result.

Report duality in mechanism design. It is interesting to ask whether the notion of
report duality, introduced in §3.3.2, can aid in the design of mechanisms. Such a technique
could proceed by first choosing G* and then taking G = G**, just as is now common in
the prediction markets literature. This approach may help meet certain constraints; if
one wants any truthful mechanism with allocations in some set O, one could choose a
convex function G* over conv({Eval,|o € O}) and work backwards to get the allocations
by taking f := dG™**.
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Chapter 6

Interpreting prediction markets

In this chapter, we strengthen recent connections between prediction markets and learning
by showing that a natural class of market makers can be understood as performing stochas-
tic mirror descent when trader demands are sequentially drawn from a fixed distribution.
This provides new insights into how market prices (and price paths) may be interpreted as
a summary of the market’s belief distribution by relating them to the optimization problem
being solved. In particular, we show that under certain conditions the stationary point of
the stochastic process of prices generated by the market is equal to the market's Walrasian
equilibrium of classic market analysis. Together, these results suggest how traditional mar-
ket making mechanisms might be replaced with general purpose learning algorithms while
still retaining guarantees about their behavior.

6.1 Introduction and literature review

This chapter is part of an ongoing line of research, spanning several authors, into for-
mal connections between markets and machine learning. In Chen and Vaughan [34] an
equivalence is shown between the theoretically popular prediction market makers based on
sequences of proper scoring rules and follow the regularised leader, a form of no-regret
online learning. By modelling the traders that demand the assets the market maker is
offering we are able to extend the equivalence to stochastic mirror decent. The dynamics
of wealth transfer is studied in Beygelzimer et al. [22], for a sequence of markets between
agents that behave as Kelly bettors (i.e. have log utilities), and an equivalence to stochas-
tic gradient decent is analysed. More broadly, Storkey [94] and Barbu and Lay [17] have
analysed how a wide range of machine learning models can be implemented in terms of
market equilibria.

The literature on the interpretation of prediction market prices, including Manski [70]
and Wolfers and Zitzewitz [102] has had the goal of relating the equilibrium prices to the
distribution of the beliefs of traders. More recent work of Othman and Sandholm [81]
has looked at a stochastic model, and studied the behavior of simple agents sequentially
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interacting with the market. We continue this latter path of research, motivated by the
observation that the equilibrium price may be a poor predictor of the behavior in a volitile
prediction market. As such, we seek a more detailed understanding of the market than the
equilibrium point — we would like to know what the “stationary distribution” of the price
is, as time goes to infinity.

As is standard in the literature, we assume a fixed (product) distribution over traders’
beliefs and wealth. Our model features an automated market maker, following the frame-
work of Abernethy et al. [1] is becoming a standard framework in the field.

We obtain two results. First, we prove that under certain conditions the stationary
point of our stochastic process defined by the market maker and a belief distribution
of traders converges to the Walrasian equilibrium of the market as the market liquidity
increases. This result, stated in Theorem 6.1, is general in the sense that only technical
convergence conditions are placed on the demand functions of the traders — as such, we
believe it is a generalisation of the stochastic result of [81] to cases where agents are are
not limited to linear demands, and leave this precise connection to future work.

Second, we show in Corollary 6.4 that when traders are Kelly bettors, the resulting
stochastic market process is equivalent to stochastic mirror descent; see e.g. [42]. This
result adds to the growing literature which relates prediction markets, and automated
market makers in general, to online learning; see e.g. [1, 34, 22].

This connection to mirror descent seems to suggest that the prices in a prediction
market at any given time may be meaningless, as the final point in stochastic mirror
descent often has poor convergence guarantees. However, standard results suggest that a
prudent way to form a “consensus estimate” from a prediction market is to average the
prices. The average price, assuming our market model is reasonable, is provably close to the
stationary price. In §6.5 we give a natural example that exhibits this behavior. Beyond this,
however, Theorem 6.3 gives us insight into the relationship between the market liquidity
and the convergence of prices; in particular it suggests that we should increase liquidity at
a rate of v/t if we wish the price to settle down at the right rate.

6.2 Model

Our market model will follow the automated market maker framework of Abernethy et
al. [1], as described in §1.2.2, though our notation will differ slightly. We will equip our
market maker with a strictly convex function C' : R” — R which is twice continuously
differentiable. For brevity we will write ¢ = V(. The outcome space is ), and the
contracts are determined by a payoff function ¢ : Q@ — R™ such that I = ¢(R") =
conv(¢(€2)). That is, the derivative space II of C' (the “instantaneous prices’) must be
the convex hull of the payoffs.

A trader purchasing shares at the current prices 7 € R™ pays C(¢p~'(7) + r) —
C(p~1(n)) for the bundle of contracts » € R™. Note that our dependence solely on
7 limits our model slightly, since in general the share space (domain of C') may contain
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more information than the current prices (cf. [1]). The bundle r is determined by an
agent's demand function d(C, ) which specifies the bundle to buy given the price = and
the cost function C'.

Our market dynamics are the following. The market maker posts the current price
7, and at each time ¢ = 1...T, a trader is chosen with demand function d drawn i.i.d.
from some demand distribution D. Intuitively, these demands are parameterized by latent
variables such as the agent's belief p € A and total wealth W. The price is then updated
to

a1 = (7 () + d(Cmy)). (6.1)

After update T, the outcome is revealed and payout ¢(w); is given for each contract
ie{l,...,n}.

6.3 Stationarity and equilibrium

We first would like to relate our stochastic model (6.1) to the standard notion of market
equilibrium from the Economics literature, which we call the Walrasian equilibrium to
avoid confusion. Here prices are fixed, and the equilibrium price is one that clears the
market, meaning that the sum of the demands r is 0 € R™. In fact, we will show that the
stationary point of our process approaches the Walrasian equilibrium point as the liquidity
of the market approaches infinity.

First, we must add a liquidity parameter to our market. Following the LMSR (the cost
function C(s) = bIn Y, e%i/?), we define

Cy(s) =bC(s/b). (6.2)

This transformation of a convex function is called a perspective function and is known to
preserve convexity [25]. Observe that ¢u(s) = VCy(s) = VC(s/b) = (s/b), meaning
that the price under Cj, at s is the same as the price under C' at s/b. As with the LMSR, we
call b the liquidity parameter; this terminology is justified by noting that one definition of
liquidity, 1/AmaxV2Cy(8) = b/AmaxV2C(s/b) (cf. [1]). In the following, we will consider
the limit as b — oo.

Second, in order to connect to the Walrasian equilibrium, we need a notion of a fixed-
price demand function: if a trader has demand d(C,-) given C, what would the same
trader’s demand be under a market where prices are fixed and do not “change” during a
trade? For the sake of generality, we restrict our allowable demand functions to the ones
for which the limit

d(F,7) = lim d(Cp, ) (6.3)

b—o0
exists; this demand d(F,-) will be the corresponding fixed-price demand for d. We now
define the Walrasion equilibrium point 7*, which is simply the price at which the mar-
ket clears when traders have demands distributed by D. Formally, this is the following
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condition:!

/ d(F, =) dD(d) = 0 (6.4)
D

Note that 0 € R™; the demand for each contract should be balanced.
The stationary point of our stochastic process, on the other hand, is the price 7 for
which the expected price fluctuation is 0. Formally, we have

Egp[A(7g, d(Cy, 7)) = 0, (6.5)

where A(m,d) = (¢! (n) + d) — 7 is the price fluctuation. We now consider the limit
of our stochastic process as the market liquidity approaches oco.

Theorem 6.1. Let C be a strictly convex and a-smooth? cost function, and assume that
%d(C’b, m) = o(1/b) uniformly in ™ and all d € D. If furthermore the limit (6.3) is uniform
in ™ and d, then limy,_,, mj = 7.

Proof. Note that by the stationarity condition (6.5) we may define 7* and 7} to be the
roots of the following “excess demand” functions, respectively:

Z(m) = /Dd(F, ) dD(d), Zp () = bEgp[A(m, d(Cy, m))],

where we scale the latter by b so that Z; does not limit to the zero function.
Let s = ¢~ !(7) be the current share vector. Then we have

Jim bA(r,d(C), T)) = Jim. b (¢ (¢~ (7) + d(Cp, m)/b) — )

d(C —
L els+ad(Chem)
a—0 a

- hm VSO (3 + ad(cl/m )) ( (Cl/av ) + a%d(cl/aa 7T))
= bhm V2C(s) d(Cb,w) = V2C(s) d(F, ),
—00

where we apply L'Hopital’s rule for the third equality. Crucially, the above limit is uniform
with respect to both d € D and 7 € II; uniformity in d is by assumption, and uniformity in
7 follows from a-smoothness of C, since C is dominated by a quadratic. Since the limit
is uniform with respect to D, we now have

lim Zj(7) = blirgo bEgp[A(m,d(Cy, 7))] = Egup blirélo bA(m,d(Cyp,))

b—o0

= V2C(s)Egupld(F,m)] = V2C(s) Z(n).

'Here and throughout we ignore technical issues of uniqueness. One may simply restrict to the class
of demands for which uniqueness is satisfied.
2( is a-smooth if AmaxV2C <
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As V2C(s) is positive definite by assumption on C, we can conclude that limy_,, Z; and
Z share the same zeroes. Since Z has compact domain and is assumed continuous with
a unique zero 7, for each € € (0, €yqz) there must be some § > 0 s.t. |Z(7w)| > € for
all m s.t. ||m — 7*|| > § (otherwise there would be a sequence of 7, — 7’ s.t. f(n') =0
but 7’ # 7*). By uniform convergence there must be a B > 0 s.t. for all b > B we have
1Zf — Z|| < €/2. In particular, for 7 s.t. |7 — 7| > 9§, |Z7(7)| > €/2. Thus, the
corresponding zeros m; must be within ¢ of 7*. Hence lim;_,o, 7 = m*.3 O

6.3.1 Utility-based demands

Maximum Expected Utility (MEU) demand functions are a particular kind of demand
function derived by assuming a trader has some belief p € A™ over the outcomes in {2, some
wealth W > 0, and a monotonically increasing utility function of money u : R — R. If such
a trader buys a bundle r of contracts from a market maker with cost function C' and price T,
her wealth after w occurs is Yo, (C, W, m,7) = W +¢(w) -r—[C(o~ (7)) +7) = C(p~(7))].
We ensure traders do not go into debt by requiring that traders only make demands
such that this final wealth is nonnegative: Yw Y, (C,7,r) > 0. The set of debt-free
bundles for wealth W and market C at price 7 is denoted S(C,W,7) = {r € R"
min,, Y, (C, W, m,r) > 0}.

A continuous MEU demand function d}ﬁvvp(C', ) is then just the demand that maximizes
a trader’s expected utility subject to the debt-free constraint. That is,

wp(C,m) = argmax Eyp[u (Yo (C,W,m,7))]. (6.6)
reS(C,W,r)

We also define a fixed-price MEU demand function dy, ,(F', ) similarly, where T, (F, W, m, r)
W+ ¢w) -r—m-rand S(FE,W,m) = {r € R" : min, Y,(F,W,m,r) > 0} are
the fixed price analogues to the continuously priced versions above. Using the notation
bS = {br|r € S}, the following relationships between the continuous and fixed price ver-
sions of T, Sy, and the expected utility are a consequence of the convexity of C'. Their
main purpose is to highlight the relationship between wealth and liquidity in MEU de-
mands. In particular, they show that scaling up of liquidity is equivalent to a scaling down
of wealth and that the continuously priced constraints and wealth functions monotonically
approach the fixed priced versions.

Lemma 6.2. For any strictly convex cost function C, wealth W > 0, price =, demand r,
and liquidity parameter b > 0 the following properties hold:

1. Yo (Cop, Wom,r) =0, (C,W/b,mt,r/b);
2. S(Cp, W, ) =bS(C,W/b,7);
3. S(C,W,r) is convex for all C;

% We thank Avraham Ruderman for a helpful discussion regarding this proof.
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4. S(C,W,m) CS(Cy, W,m) C S(F,W,n) for all b > 1.

5. For monotone utilities u, E [u (Y, (E,W,m,7))] > E [u(Y,(C,W, 7, 1))

wrp w~p
Proof. Property (1) follows from a simple computation:
Yo(Cop, Wy, 1) = W 4 ¢p(w) -7 — bC (o (m) +7/b) + bC(p~ L (n))
=b(W/b+(w) - (r/b) = Clp™"(m) +1/b) + Cle™ (m))),
which equals b Y,,(C, W/b,m,r/b) by definition. We now can see property (2) as well:
S(Cy, W, ) ={r : rrganw(C, W/b,m,r/b) > 0}
={br : ranTw(C, W/b,m,r) > 0}.

For (3), define fosu(r) = C(s+ 1) — C(s) — ¢(w) - r, which is the ex-post cost of
purchasing bundle . As C' is convex, and fc s is a shifted and translated version of C'
plus a linear term, fc s, is convex also. The constraint Y,(C, W, 7, 7) > 0 then translates
to fosw(r) < W, and thus the set of  which satisfy the constraint is convex as a sublevel
set of a convex function. Now S(C,W, ) is convex as an intersection of convex sets,
proving (3).

For (4) suppose r satisfies fo ., (r) < W. Note that fc 5., (0) = 0 always. Then by
convexity we have for f := fc . we have f(r/b) = f (%r + Z’%O) < %f(r) + ZFTl() <
W /b, which implies S(C, W, ) C S(Cy, W, ) when considering (3). To complete (4) note
that fc 5. dominates fps: 7 — (¢(s) — ¢(w)) - r by convexity of C: C(s+ 1) —C(s) >

VC(s)-r.
Finally, proof of (5) is obtained by noting that the convexity of C means that C'(¢~!(7)+
r) — C(e~Y(m)) > VC(o~Y(m)) - r = m - r and exploting the monotonicty of u. O

Lemma 6.2 shows us that MEU demands have a lot of structure, and in particular,
properties (4) and (5) suggest that they may satisfy the conditions of Theorem 6.1; we
leave this as an open question for future work. Another interesting aspect of Lemma 6.2 is
the relationship between markets with cost function C}, and wealths W and markets with
cost function C and wealths W/b —indeed, properties (1) and (2) suggest that the liquidity
limit should in some sense be equivalent to a wealth limit, in that increasing liquidity by
a factor b should yield similar dynamics to decreasing the wealths by b. This would relate
our model to that of Othman and Sandholm [81], where the authors essentially show a
wealth-limit version of Theorem 6.1 for a binary-outcome market where traders have linear
utilities (a special case of (6.6)). We leave this precise connection for future work.

6.4 Market making as mirror descent

We now explore the surprising relationship between our stochastic price update and stan-
dard stochastic optimization techniques. In particular, we will relate our model to a stochas-
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tic mirror descent of the form

Tyl = argrﬁin{nx -VF(z;€) + Dr(x,x)}, (6.7)
re

where at each step £ ~ = are i.i.d. and R is some strictly convex function. We will refer
to an algorithm of the form (6.7) a stochastic mirror descent of f(x) = E¢oz[F(x;€)].

Theorem 6.3. If for all d € D we have some F(-;d) : R" — R" such that d(R*,7) =
—VF(m;d), then the stochastic update of our model (6.1) is exactly a stochastic mirror
descent of f(m) = Equp[F(m;d)].

Proof. By standard arguments, the mirror descent update (6.7) can be rewritten as
zi41 = VR*(VR(zy) — VF(24;8)),

where R* is the conjugate dual of R. Take R = C*, and let £ = d ~ D. By assumption,
we have VF(z;d) = —d(R*,x) = —d(C,x) foralld. As VR* = VC = go, we have p~! =
(VR*)™! = VR by duality, and thus our update becomes z;11 = ¢ (¢ (1) + d(C, z¢)),
which exactly matches the stochastic update of our model (6.1). O

As an example, consider Kelly betters, which correspond to fixed-price demands d(C, ) =

dlog (F,m) with utility u(z) = logz as defined in (6.3). A simple calculation shows that
our update becomes

Wp—Tr)

7rt+1—90<s0 (e )+?1_7T (6.8)

where W and p are drawn (independently) from P and W.

Corollary 6.4. The stochastic update for fixed-price Kelly betters (6.8) is exactly a stochas-
tic mirror descent of f(w) = W - KL(p, ), where p and W are the means of P and W,
respectively.

Proof. We take F(w;dy?,) = W - (KL(p, ) + H(p)). Then

o - —1 W - o,
V(e dE ) = W (p . ) = Wpmr_ g g,

r 11—z

Hence, by Theorem 6.3 our update is a stochastic mirror descent of:

f(x) = B[P (x; dyf,)]
E[Wplogx + W (1 — p)log(l — z)]
=W (KL(p,z) + H(p)),
which of course is equivalent to W - KL(p,z) as the entropy term does not depend on
T. O
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Note that while this last result is quite compelling, we have mixed fixed-price demands
with a continuous-price market model — see §6.3.1. One could interpret this combination
as a model in which the market maker can only adjust the prices after a trade, according
to a fixed convex cost function C. This of course differs from the standard model, which
adjusts the price continuously during a trade.

6.4.1 Leveraging existing learning results

Theorem 6.3 not only identifies a fascinating connection between machine learning and our
stochastic prediction market model, but it also allows us to use powerful existing techniques
to make broad conclusions about the behavior of our model. Consider the following result:

Proposition 6.5 ([42]). If |[VF(m;p)||?> < G? for all p,, and R is o-strongly convex,
then with probability 1 — 6,

2 2
fr) < min ) + (1 + 57 (1 14 1og§) |

In our context, Proposition 6.5 says that the average of the prices will be a very good
estimate of the minimizer of f, which as suggested by happens to be the underlying mean
belief p of the traders! Moreover, as the Kelly demands are linear in both p and W, it
is easy to see from Theorem 6.1 that p is also the stationary point and the Walrasian
equilibrium point (the latter was also shown by Wolfers and Zitzewitz [102]). On the
other hand, as we demonstrate next, it is not hard to come up with an example where the
instantaneous price m; is quite far from the equilibrium at any given time period.

Before moving to empirical work, we make one final point. The above relationship
between our stochastic market model and mirror descent sheds light on an important
question: how might an automated market maker adjust the liquidity so that the market
actually converges to the mean of the traders' beliefs? The learning parameter 1 can
be thought of as the inverse of the liquidity, and as such, Proposition 6.5 suggests that
increasing the liquidity as v/t may cause the mean price to converge to the mean belief
(assuming a fixed underlying belief distribution).

6.5 Empirical work

Example: biased coin

Consider a classic Bayesian setting where a coin has unknown bias Prlheads] = ¢, and
traders have a prior S(a, a) over q (i.e., traders are a-confident that the coin is fair). Now
suppose each trader independently observes n flips from the coin, and updates her belief;
upon seeing k heads, a trader would have posterior f(a + k,a +n — k).
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Figure 6.1: Price movement for Kelly betters with binomial(q = 0.6, n = 6, a = 0.5) beliefs in
the LMSR market with liquidity b = 10.

When presented with a prediction market with contracts for a single toss of the coin,
where and contract 0 pays $1 for tails and contract 1 pays $1 for heads, a trader would pur-
chase contracts as if according to the mean of their posterior. Hence, the belief distribution
P of the market assigns weight P(p) = (})¢"(1 — ¢)" " to belief p = (o + k) /(2 + n),
yielding a biased mean belief of (a + nq)/(2a 4 n).

We show a typical simulation of this market in Figure 6.1, where traders behave as
Kelly betters in the fixed-price LMSR. Clearly, after almost every trade, the market price is
quite far from the equilibrium /stationary point, and hence the classical supply and demand
analysis of this market yields a poor description of the actual behavior, and in particular, of
the predictive quality of the price at any given time. However, the mean price is consistently
close to the mean belief of the traders, which in turn is quite close to the true parameter
q.
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Figure 6.2: Mean square loss of average and instantaneous prices relative to the mean
belief of 0.26 over 20 simulations for State 9 for b = 1 (left), b = 3 (middle), and b = 10
(right). Bars show standard deviation.

Election Survey Data

We now compare the quality of the running average price versus the instantaneous price as a
predictor of the mean belief of a market. We do so by simulating a market maker interacting
with traders with unit wealth, log utility, and beliefs drawn from a fixed distribution. The
belief distributions are derived from the Princeton election survey data [99]. For each of
the 50 US states, participants in the survey were asked to estimate the probability that



113

one of two possible candidates were going to win that state.* We use these 50 sets of
estimates as 50 different empirical distributions from which to draw trader beliefs.

A simulation is configured by choosing one of the 50 empirical belief distributions S,
a market liquidity parameter b to define the LMSR cost function C(s) = bIn ), e/,
and an initial market position vector of (0,0) — that is, no contracts for either outcome.
A configured simulation is run for T" trades. At each trade, a belief p is drawn from S
uniformly and with replacement. This belief is used to determine the demand of the trader
relative to the current market pricing. The trader purchase a bundle of contracts according
to its demand and the market moves its position and price accordingly. The complete
price path m; for ¢ = 1,...,T of the market is recorded as well as a running average
price Ty = %Elem fort = 1...,T. For each of the 50 empirical belief distributions
we configured 9 markets with b € {1,2,3,5,10,15,20,30,50} and ran 20 independent
simulations of T" = 100 trades. We present a portion of the results for the empirical
distributions for states 9 and 11. States 9 and 11 have, respectively, sample sizes of 2,717
and 2,709; means 0.26 and 0.9; and variances 0.04 and 0.02. These are chosen as being
representative of the rest of the simulation results: State 9 with mean off-center and a
spread of beliefs (high uncertainty) and State 11 with highly concentrated beliefs around
a single outcome (low uncertainty).

The results are summarised in Figures 6.2, 6.3, and 6.4. The first show the square loss
of the average and instaneous prices relative to the mean belief for high uncertainty State
9 for b =1, 3,10. Clearly, the average price is a much more reliable estimator of the mean
belief for low liquidity (b = 1) and is only outperformed by the instaneous price for higher
liquidity (b = 10), but then only early in trading. Similar plots for State 11 are shown in
Figure 6.3 where the advantage of using the average price is significantly diminished.

Figure 6.4 shows the improvement the average price has over the instantaneous price in
square loss relative to the mean belief for all liquidity settings and highlights that average
prices work better in low liquidity settings, consistent with the theory. Similar trends were
observed for all the other States, depending on whether they had high uncertainty — in
which case average price was a much better estimator — or low uncertainty — in which case
instanteous price was better.

6.6 Conclusion and future work

As noted in §6.3.1, there are several open questions with regard to maximum expected
utility demands and Theorem 6.1, as well as the relationship between trader wealth and
market liquidity. It would also be interesting to have a application of Theorem 6.3 to a
continuous-price model, which yields a natural minimization as in Corollary 6.4. The equiv-
alence to mirror decent stablished in Theorem 6.3 may also lead to a better understanding

* The original dataset contains conjunctions of wins as well as conditional statements but we only use
the single variable results of the survey.
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belief of 0.9 over 20 simulations for State 11 for b = 1 (left), b = 3 (middle), and b = 10
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of the optimal manner in which a automated prediction market ought to increase liquidity
so as to maximise efficiency.
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