A Characterization of Scoring Rules for Linear Properties

Rafael Frongillo

Department of Computer Science University of California at Berkeley

June 26, 2012

Joint work with Jake Abernethy

A Characterization of Proper Losses for Linear Properties

Rafael Frongillo

Department of Computer Science University of California at Berkeley

June 26, 2012

Joint work with Jake Abernethy

The unstoppable Jake Abernethy

The unstoppable Jake Abernethy

Now a postdoc at UPenn with Michael Kearns

Proper Losses

Typical setting: classification
\square Labels $y \in[n]=\{1, \ldots, n\}$

- Prediction $p \in \Delta_{n}$
\square Loss $\ell: \Delta_{n} \rightarrow \mathbb{R}^{n} \longleftarrow$ a vector: loss of p and y is $\ell[p]_{y}$

Proper Losses

Typical setting: classification
■ Labels $y \in[n]=\{1, \ldots, n\}$

- Prediction $p \in \Delta_{n}$
\square Loss $\ell: \Delta_{n} \rightarrow \mathbb{R}^{n} \longleftarrow$ a vector: loss of p and y is $\ell[p]_{y}$
$\square \ell$ is proper if $p=\underset{q}{\operatorname{argmin}}\{\ell[q] p\}$

Proper Losses

Typical setting: classification
■ Labels $y \in[n]=\{1, \ldots, n\}$

- Prediction $p \in \Delta_{n}$
\square Loss $\ell: \Delta_{n} \rightarrow \mathbb{R}^{n} \longleftarrow$ a vector: loss of p and y is $\ell[p]_{y}$
$\square \ell$ is proper if $p=\underset{q}{\operatorname{argmin}}\{\ell[q] p\}$

Proper Losses

Typical setting: classification
\square Labels $y \in[n]=\{1, \ldots, n\}$

- Prediction $p \in \Delta_{n}$
$■$ Loss $\ell: \Delta_{n} \rightarrow \mathbb{R}^{n} \longleftarrow$ a vector: loss of p and y is $\ell[p]_{y}$
$\square \ell$ is proper if $p=\underset{q}{\operatorname{argmin}}\{\ell[q] p\}$

$$
-\mathbb{E}_{y \sim p}\left[\ell[q]_{y}\right]
$$

Example: log loss

- Take $\ell[p]_{y}=-\log p_{y}$
\square Now $\ell[q] p=-\sum p_{y} \log q_{y}=\operatorname{KL}(p \| q)+H(p)$
Minimized at $q=p$

Proper Losses... for Properties

Our setting: properties of distributions
■ Outcomes $\omega \in \Omega$
■ Distributional property $\Gamma: \Delta_{\Omega} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{k}$ summary information

- Prediction $v \in \mathcal{V}$
$■$ Loss $\ell: \mathcal{V} \rightarrow \mathbb{R}^{\Omega}$ loss of v and ω is $\ell[v] \omega$
$\square \ell$ is Γ-proper if $\Gamma(p)=\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$

Proper Losses... for Properties

Our setting: properties of distributions
■ Outcomes $\omega \in \Omega$
■ Distributional property $\Gamma: \Delta_{\Omega} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{k}$ summary information

- Prediction $v \in \mathcal{V}$
$■$ Loss $\ell: \mathcal{V} \rightarrow \mathbb{R}^{\Omega} \quad$ loss of v and ω is $\ell[v] \omega$
$\square \ell$ is Γ-proper if $\Gamma(p)=\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$
We will consider linear Γ :
$■ \Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$ for some $\phi: \Omega \rightarrow \mathcal{V}$ i.e. means

Motivation

This talk:
A Characterization of Proper Losses for Linear Properties

Our goal

Given some linear property $\Gamma: \Delta_{\Omega} \rightarrow \mathcal{V}$, determine exactly the losses $\ell: \mathcal{V} \rightarrow \mathbb{R}^{\Omega}$ which are Γ-proper
... Why bother?

Motivation: Proper

Proper losses are well-calibrated

Motivation: Proper

Proper losses are well-calibrated

Example: learning a coin's bias p
■ Want ℓ to measure performance

Motivation: Proper

Proper losses are well-calibrated

Example: learning a coin's bias p
■ Want ℓ to measure performance

- After N >> 1 flips, we want

$$
p \approx \underset{q}{\operatorname{argmin}}\left\{\frac{\text { \#heads }}{N} \ell[q]_{\text {heads }}+\frac{\# \text { tails }}{N} \ell[q]_{\text {tails }}\right\}
$$

"expected" loss of predicting q

Motivation: Characterization

Loss should quantify error

Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean

Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean
■ Squared: $\ell[v]_{\omega}=(v-\omega)^{2}$

Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean
■ Squared: $\ell[v]_{\omega}=(v-\omega)^{2}$
$■$ Log: $\quad \ell[v]_{\omega}=K L(\omega \| v)$

Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean
■ Squared: $\ell[v]_{\omega}=(v-\omega)^{2}$
\square Log: $\quad \ell[v]_{\omega}=K L(\omega \| v)$
Very different notions of error

Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean
■ Squared: $\ell[v]_{\omega}=(v-\omega)^{2}$
\square Log: $\quad \ell[v]_{\omega}=K L(\omega \| v)$
Very different notions of error

Given a notion of error, when can I design a proper loss to match?

Motivation: Properties

Problem: What if your "classification" problem has a huge (∞) number of classes?
E.g. Price of gas next month?

Motivation: Properties

Problem: What if your "classification" problem has a huge (∞) number of classes?
E.g. Price of gas next month?

Solution: Use а $\Gamma: \Delta_{\Omega} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{k}$
Only extract the "relevant information" from your data

Motivation: Linear Properties

Problem: What if your "classification" problem has a huge (∞) number of classes?
E.g. Price of gas next month?

Solution: Use а $\Gamma: \Delta_{\Omega} \rightarrow \mathcal{V} \subseteq \mathbb{R}^{k}$
Only extract the "relevant information" from your data

Means are quite expressive:
\square First k moments of a distribution: $\phi(\omega)=\left(\omega, \omega^{2}, \ldots, \omega^{k}\right)$
■ Covariance matrix: $\phi(\omega)_{(i, j)}=\omega_{i} \omega_{j}$

Known characterizations of proper losses

Functional properties of Gamma

Linear

Nonlinear

Identity

Dimension of V

Bregman divergences

Given convex $f: \mathcal{V} \rightarrow \mathbb{R}$, the Bregman divergence w.r.t. f :

$$
D_{f}(x, y):=f(x)-f(y)-\nabla f(y) \cdot(x-y)
$$

f is called: Bayes risk, regularizer, generalized entropy

Bregman divergences

Given convex $f: \mathcal{V} \rightarrow \mathbb{R}$, the Bregman divergence w.r.t. f :

$$
D_{f}(x, y):=f(x)-f(y)-\nabla f(y) \cdot(x-y)
$$

f is called: Bayes risk, regularizer, generalized entropy

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Fact: this ℓ is proper for linear property $\Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Fact: this ℓ is proper for linear property $\Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$ $\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Fact: this ℓ is proper for linear property $\Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$
$\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$
$=\underset{v}{\operatorname{argmin}}\{\underset{\omega \sim p}{\mathbb{E}}[f(\phi(\omega))-f(v)-\nabla f(v) \cdot(\phi(\omega)-v)]\}$

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Fact: this ℓ is proper for linear property $\Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$
$\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$
$=\underset{v}{\operatorname{argmin}}\{\underset{\omega \sim p}{\mathbb{E}}[f(\phi(\omega))-f(v)-\nabla f(v) \cdot(\phi(\omega)-v)]\}$
$=\underset{v}{\operatorname{argmin}}\{-f(v)-\nabla f(v) \cdot(\Gamma(p)-v)\}$

Divergences and means

Definition: ℓ is divergence-based if $\exists f, \phi$ s.t.

$$
\ell[v]_{\omega}=D_{f}(\phi(\omega), v)
$$

Fact: this ℓ is proper for linear property $\Gamma(p)=\mathbb{E}_{\omega \sim p}[\phi(\omega)]$
$\underset{v}{\operatorname{argmin}}\{\ell[v] p\}$
$=\underset{v}{\operatorname{argmin}}\{\underset{\omega \sim p}{\mathbb{E}}[f(\phi(\omega))-f(v)-\nabla f(v) \cdot(\phi(\omega)-v)]\}$
$=\underset{v}{\operatorname{argmin}}\{-f(v)-\nabla f(v) \cdot(\Gamma(p)-v)\}$
$=\underset{v}{\operatorname{argmin}}\left\{D_{f}(\Gamma(p), v)-f(\Gamma(p))\right\}=\Gamma(p)$

Characterization for linear properties

This shows divergence-based $\Longrightarrow \Gamma$-proper for some linear Γ
Q: Is every Γ-proper loss ℓ divergence-based?

Characterization for linear properties

This shows divergence-based $\Longrightarrow \Gamma$-proper for some linear Γ
Q: Is every $Г$-proper loss ℓ divergence-based?

A: Yes ${ }^{1}$!

Theorem (Abernethy, F.)

ℓ is Γ-proper for linear $\Gamma \Longleftrightarrow \ell$ is divergence-based
${ }^{1}$ with extremely weak differentiability assumptions

Proof Intuition

We draw intuition from the identity case i.e. $\Gamma(p)=p$

Theorem (Gneiting and Raftery, 2010)
$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based

Proof Intuition

We draw intuition from the identity case i.e. $\Gamma(p)=p$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:
■ Extract

$$
f(p)=\ell[p] p
$$

Bayes risk, concave

Proof Intuition

We draw intuition from the identity case

$$
\text { i.e. } \Gamma(p)=p
$$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:

- Extract

$$
f(p)=\ell[p] p
$$

Bayes risk, concave
■ Observe
$\ell[p] q-p) \geq \ell[q] q$ from propriety

Proof Intuition

We draw intuition from the identity case

$$
\text { i.e. } \Gamma(p)=p
$$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:
■ Extract $\quad f(p)=\ell[p] p \quad$ Bayes risk, concave
■ Observe $\ell[p] p+\ell[p](q-p) \geq \ell[q] q$ from propriety

Proof Intuition

We draw intuition from the identity case

$$
\text { i.e. } \Gamma(p)=p
$$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:
■ Extract $\quad f(p)=\ell[p] p \quad$ Bayes risk, concave

- Observe $\frac{\ell[p] p+\ell[p](q-p) \geq \ell[q] q}{f(p)} \quad$ from propriety

Proof Intuition

We draw intuition from the identity case

$$
\text { i.e. } \Gamma(p)=p
$$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:
■ Extract $\quad f(p)=\ell[p] p \quad$ Bayes risk, concave
■ Observe $\ell[p] p+\ell[p](q-p) \geq \ell[q] q \quad$ from propriety

$$
f(p) \quad \partial f(p) \quad f(q)
$$

■ Hence $\ell[p]$ is a gradient of $f!\quad \Longrightarrow$ divergence

Proof Intuition

We draw intuition from the identity case

$$
\text { i.e. } \Gamma(p)=p
$$

Theorem (Gneiting and Raftery, 2010)

$\ell: \Delta_{\Omega} \times \Omega \rightarrow \mathbb{R}$ proper $\Longrightarrow \ell$ is divergence-based
Their proof:
■ Extract $\quad f(p)=\ell[p] p$ Bayes risk, concave
■ Observe $\ell[p] p+\ell[p](q-p) \geq \ell[q] q$ from propriety

$$
f(p) \quad \partial f(p) \quad f(q)
$$

■ Hence $\ell[p]$ is a gradient of $f!\quad \Longrightarrow$ divergence

Proof Intiution

Their proof:
??
\square Extract $\quad f(p)=\ell[p] p$

Challenge: How to define f when $\mathcal{V} \neq \Delta_{\Omega}$?

Proof Intiution

Their proof:
??
■ Extract $\quad f(p)=\ell[p] p$

Challenge: How to define f when $\mathcal{V} \neq \Delta_{\Omega}$?
■ Let \hat{p} such that $\Gamma \circ \hat{p} \equiv \mathrm{id}_{\mathcal{V}}$
A "family" of distributions with "parameter space" \mathcal{V}
■ $\operatorname{Now} f(v)=\ell[v] \hat{\rho}[v]$

Switching Gears: Prediction Markets

$\$ 0.22$

$\$ 0.35$

Johnson $\$ 1$

$\$ 0.43$

Switching Gears: Prediction Markets

$\$ 0.22$

$\$ 0.35$

$\$ 0.43$

■ Traders buy and sell these contracts

Switching Gears: Prediction Markets

Obama $\$ 1$
$\$ 0.22+$Romney $\$ 1$
$\$ 0.35$
$\$ 1$

■ Traders buy and sell these contracts

Switching Gears: Prediction Markets

Obama $\$ 1$
$\$ 0.22+$Romney $\$ 1$
$\$ 0.35+\$ 0.43=1$
$\$ 1$

■ Traders buy and sell these contracts
■ Prices reflect the consensus prediction

Quantifying the Wagers

In standard market maker model, prices adapt to trades

Quantifying the Wagers

In standard market maker model, prices adapt to trades
From NIPS 2011, we can describe the net profit of such a trade in terms of the change $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$ in the prices...

Quantifying the Wagers

In standard market maker model, prices adapt to trades
From NIPS 2011, we can describe the net profit of such a trade in terms of the change $\mathbf{p} \rightarrow \mathbf{p}^{\prime}$ in the prices...
... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)

Traders have profit $\ell[\mathbf{p}]_{\omega}-\ell\left[\mathbf{p}^{\prime}\right]_{\omega} \Longleftrightarrow \ell$ is divergence-based

Tying it all together

NIPS 2011:
Traders have profit $\ell[\mathbf{p}]_{\omega}-\ell\left[\mathbf{p}^{\prime}\right]_{\omega} \Longleftrightarrow \ell$ divergence-based

Tying it all together

NIPS 2011:
Traders have profit $\ell[\mathbf{p}]_{\omega}-\ell\left[\mathbf{p}^{\prime}\right]_{\omega} \Longleftrightarrow \ell$ divergence-based

COLT 2012:

ℓ divergence-based $\Longleftrightarrow \quad \ell$ proper loss for linear Γ

Tying it all together

NIPS 2011:
Traders have profit $\ell[\mathbf{p}]_{\omega}-\ell\left[\mathbf{p}^{\prime}\right]_{\omega} \Longleftrightarrow \ell$ divergence-based

COLT 2012:
ℓ divergence-based $\Longleftrightarrow \quad \ell$ proper loss for linear Γ

Hence, prediction markets $\stackrel{1 \text { to } 1}{\Longleftrightarrow}$ proper losses for means!
i.e. Prediction Markets \Longleftrightarrow Market Scoring Rules

Thanks!

