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Proper Losses

Typical setting: classification
Labels y ∈ [n] = {1, . . . , n}
Prediction p ∈ Δn
Loss ℓ : Δn → Rn ←− a vector: loss of p and y is ℓ[p]y
ℓ is proper if p = rgmin

q

�

ℓ[q]p
	

Ey∼p[ℓ[q]y]

Example: log loss
Take ℓ[p]y = − logpy
Now ℓ[q]p = −

∑

py logqy = KL(p‖q) +H(p)
Minimized at q = p
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Proper Losses... for Properties

Our setting: properties of distributions
Outcomes ω ∈ Ω
Distributional property  : ΔΩ → V ⊆ Rk summary information

Prediction  ∈ V
Loss ℓ : V → RΩ loss of  and ω is ℓ[]ω
ℓ is -proper if (p) = rgmin



�

ℓ[]p
	

We will consider linear :
(p) = Eω∼p[ϕ(ω)] for some ϕ : Ω→ V i.e. means
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Motivation

This talk:

A Characterization of Proper Losses for Linear Properties

Our goal

Given some linear property  : ΔΩ → V, determine exactly the
losses ℓ : V → RΩ which are -proper

... Why bother?
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Motivation: Proper

Proper losses are well-calibrated

Example: learning a coin’s bias p
Want ℓ to measure performance
After N >> 1 flips, we want

p ≈ rgmin
q

¨

#heads

N
ℓ[q]heads +

#tails

N
ℓ[q]tails

«

“expected” loss of predicting q
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Motivation: Characterization

0 Ep(ω) 1

Loss should quantify error

Two losses for eliciting a mean
Squared: ℓ[]ω = ( −ω)2

Log: ℓ[]ω = KL(ω‖)
Very different notions of error

Given a notion of error, when can
I design a proper loss to match?
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Motivation: Properties

Problem: What if your “classification” problem has a huge (∞)
number of classes?
E.g. Price of gas next month?

Solution: Use a  : ΔΩ → V ⊆ Rk
Only extract the “relevant information” from your data

Means are quite expressive:
First k moments of a distribution: ϕ(ω) = (ω,ω2, . . . , ωk)
Covariance matrix: ϕ(ω)(,j) = ωωj
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Motivation: Linear Properties
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Known characterizations of proper losses

Linear Nonlinear

K=
1

D
im

en
si

on
 o

f V

Identity
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Functional properties of Gamma

Open

This talk

Lambert, Pennock, Shoham (2008)

Gneiting and
Raftery (2007)
Vernet, Reid,
Williamson (2011)
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Bregman divergences

Given convex ƒ : V → R, the Bregman divergence w.r.t. ƒ :

Dƒ (, y) := ƒ ()− ƒ (y)− ∇ƒ (y) · (− y)

ƒ is called: Bayes risk, regularizer, generalized entropy

Dƒ (, y)ƒ (y) + ∇ƒ (y)( · − y)

y 

ƒ (·)
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Divergences and means

Definition: ℓ is divergence-based if ∃ƒ , ϕ s.t.

ℓ[]ω = Dƒ (ϕ(ω), )

Fact: this ℓ is proper for linear property (p) = Eω∼p[ϕ(ω)]

rgmin


{ℓ[]p}

= rgmin


�

E
ω∼p

h

ƒ (ϕ(ω))− ƒ ()− ∇ƒ () · (ϕ(ω)− )
i

�

= rgmin


{−ƒ ()− ∇ƒ () · ((p)− )}

= rgmin


¦

Dƒ ((p), )− ƒ ((p))
©

= (p)
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Characterization for linear properties

This shows divergence-based =⇒ -proper for some linear 

Q: Is every -proper loss ℓ divergence-based?

A: Yes1!

Theorem (Abernethy, F.)

ℓ is -proper for linear  ⇐⇒ ℓ is divergence-based

1with extremely weak differentiability assumptions
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Proof Intuition

We draw intuition from the identity case i.e. (p) = p

Theorem (Gneiting and Raftery, 2010)

ℓ : ΔΩ ×Ω→ R proper =⇒ ℓ is divergence-based

Their proof: ??

Extract ƒ (p) = ℓ[p] p Bayes risk, concave

Observe ℓ[p] p + ℓ[p] (q−p) ≥ ℓ[q] q from propriety

Consider ƒ (p) ∂ƒ (p) ƒ (q)

Hence ℓ[p] is a gradient of ƒ ! =⇒ divergence
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Proof Intiution

Their proof: ??

Extract ƒ (p) = ℓ[p] pƒ (p) = ℓ[p] p

Challenge: How to define ƒ when V 6= ΔΩ?

Let p̂ such that  ◦ p̂ ≡ idV
A “family” of distributions with “parameter space” V

Now ƒ () = ℓ[]p̂[]
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Switching Gears: Prediction Markets

Obama
$1

Romney
$1

Johnson
$1

$0.22 + $0.35 + $0.43 = 1

Traders buy and sell these contracts
Prices reflect the consensus prediction
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Quantifying the Wagers

In standard market maker model, prices adapt to trades

From NIPS 2011, we can describe the net profit of such a trade in
terms of the change p→ p′ in the prices...

... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)

Traders have profit ℓ[p]ω − ℓ[p′]ω ⇐⇒ ℓ is divergence-based

Aside: can use this framework for data mining competitions!
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Tying it all together

NIPS 2011:

Traders have profit ℓ[p]ω − ℓ[p′]ω ⇐⇒ ℓ divergence-based

COLT 2012:

ℓ divergence-based ⇐⇒ ℓ proper loss for linear 

Hence, prediction markets
1 to 1
⇐⇒ proper losses for means!

i.e. Prediction Markets ⇐⇒ Market Scoring Rules
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Thanks!
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