Previous work

Main result

Prediction markets

A Characterization of Scoring Rules for Linear Properties

Rafael Frongillo

Department of Computer Science University of California at Berkeley

June 26, 2012

Joint work with Jake Abernethy

Previous work

Main result

Prediction markets

A Characterization of Proper Losses for Linear Properties

Rafael Frongillo

Department of Computer Science University of California at Berkeley

June 26, 2012

Joint work with Jake Abernethy

Previous wo

Main result

Prediction markets

The unstoppable Jake Abernethy

Now a postdoc at UPenn with Michael Kearns

Main result

Prediction markets

The unstoppable Jake Abernethy Now a postdoc at UPenn with Michael Kearns

Warm-up ●oooooo	Previous work	Main result	Prediction markets
Proper Lo	SSes		

Typical setting: classification

- Labels $y \in [n] = \{1, ..., n\}$
- Prediction $p \in \Delta_n$
- Loss $l : \Delta_n \to \mathbb{R}^n \longleftarrow a$ vector: loss of p and y is $l[p]_y$

 $l is proper if p = \underset{q}{\operatorname{argmin}} \{ l[q]p \}$

Example: log loss

Take $l[p]_y = -\log p_y$

Warm-up ●ooooo	Previous work	Main result	Prediction markets
Proper Lo	osses		

Typical setting: classification

- Labels $y \in [n] = \{1, ..., n\}$
- Prediction $p \in \Delta_n$
- Loss $l : \Delta_n \to \mathbb{R}^n \longleftarrow a$ vector: loss of p and y is $l[p]_y$
- $\blacksquare \ l \text{ is proper if } p = \underset{q}{\operatorname{argmin}} \{ \ l[q]p \}$

 $\mathbb{E}_{y \sim p}[l[q]_y]$

Example: log loss

Take $l[p]_y = -\log p_y$

Warm-up ●oooooo	Previous work	Main result	Prediction markets
Proper Lo	SSES		

 $- \mathbb{E}_{v \sim p} [\ell[q]_v]$

Typical setting: classification

• Labels
$$y \in [n] = \{1, ..., n\}$$

- Prediction $p \in \Delta_n$
- Loss $l : \Delta_n \to \mathbb{R}^n \longleftarrow a$ vector: loss of p and y is $l[p]_y$

• l is proper if $p = \underset{q}{\operatorname{argmin}} \{ \begin{array}{c} l[q]p \\ \\ \end{array} \}$

Example: log loss

Take $\ell[p]_y = -\log p_y$

Warm-up ●oooooo	Previous work	Main result	Prediction markets
Proper Lo	SSES		

Typical setting: classification

• Labels
$$y \in [n] = \{1, ..., n\}$$

- Prediction $p \in \Delta_n$
- Loss $l : \Delta_n \to \mathbb{R}^n \longleftarrow a$ vector: loss of p and y is $l[p]_y$

•
$$l$$
 is proper if $p = \operatorname{argmin} \{ \begin{array}{c} l[q]p \\ q \end{array} \}$
 $\mathbb{E}_{y \sim p}[l[q]_y]$

Example: log loss

Take
$$\ell[p]_y = -\log p_y$$

Warm-up o●oooo	Previous work	Main result	Prediction markets
Proper Losse	s for Properties	5	

Our setting: properties of distributions

- Outcomes $\omega \in \Omega$
- Distributional property $\Gamma : \Delta_{\Omega} \to \mathcal{V} \subseteq \mathbb{R}^k$ summary information
- Prediction $v \in V$
- Loss $l: \mathcal{V} \to \mathbb{R}^{\Omega}$ loss of v and ω is $l[v]_{\omega}$
- $l is \Gamma$ -proper if $\Gamma(p) = \underset{v}{\operatorname{argmin}} \{ \ell[v] p \}$

We will consider *linear* Γ:

 $\Gamma(p) = \mathbb{E}_{\omega \sim p}[\phi(\omega)] \text{ for some } \phi : \Omega \to \mathcal{V} \quad i.e. \text{ means}$

Warm-up o●oooo	Previous work	Main result	Prediction markets
Proper Losse	s for Properties	\$	

Our setting: properties of distributions

- Outcomes $\omega \in \Omega$
- Distributional property $\Gamma : \Delta_{\Omega} \to \mathcal{V} \subseteq \mathbb{R}^k$ summary information
- Prediction $v \in V$
- Loss $l: \mathcal{V} \to \mathbb{R}^{\Omega}$ loss of v and ω is $l[v]_{\omega}$

$$\ell \text{ is } \Gamma\text{-proper if } \Gamma(p) = \operatorname{argmin}_{V} \{ \ell[v] p \}$$

We will consider *linear* Γ :

 $\Gamma(p) = \mathbb{E}_{\omega \sim p}[\phi(\omega)] \text{ for some } \phi : \Omega \to \mathcal{V} \quad i.e. \text{ means}$

Warm-up oo●ooo	Previous work	Main result	Prediction markets
Motivation			

This talk:

A Characterization of Proper Losses for Linear Properties

Our goal

Given some linear property $\Gamma : \Delta_{\Omega} \to \mathcal{V}$, determine exactly the losses $\ell : \mathcal{V} \to \mathbb{R}^{\Omega}$ which are Γ -proper

... Why bother?

Warm-up ooo●oo	Previous work	Main result	Prediction markets
Motivation	: Proper		

Proper losses are well-calibrated

Example: learning a coin's bias p

■ Want *l* to measure *performance*

• After $N \gg 1$ flips, we want

$$p \approx \underset{q}{\operatorname{argmin}} \left\{ \frac{\# \text{heads}}{N} \ell[q]_{\text{heads}} + \frac{\# \text{tails}}{N} \ell[q]_{\text{tails}} \right\}$$

"expected" loss of predicting q

Warm-up ooo●oo	Previous work	Main result	Prediction markets
Motivation	Proper		

Proper losses are well-calibrated

Example: learning a coin's bias p

■ Want *l* to measure *performance*

• After N >> 1 flips, we want

$$p \approx \arg\min_{q} \left\{ \frac{\#\text{heads}}{N} \ell[q]_{\text{heads}} + \frac{\#\text{tails}}{N} \ell[q]_{\text{tails}} \right\}$$

"expected" loss of predicting q

Warm-up ooo●oo	Previous work	Main result	Prediction markets
Motivatior	n: Proper		

Proper losses are well-calibrated

Example: learning a coin's bias p

- Want *l* to measure *performance*
- After N >> 1 flips, we want

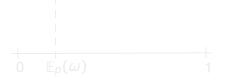
$$p \approx \operatorname{argmin}_{q} \left\{ \frac{\# \text{heads}}{N} \ell[q]_{\text{heads}} + \frac{\# \text{tails}}{N} \ell[q]_{\text{tails}} \right\}$$

"expected" loss of predicting q

Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should *quantify* error

Two losses for eliciting a mean Squared: $\ell[v]_{\omega} = (v - \omega)^2$ Log: $\ell[v]_{\omega} = KL(\omega||v)$ Very different notions of error



Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should *quantify* error

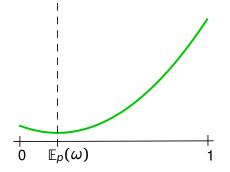
Two losses for eliciting a mean Squared: $\ell[v]_{\omega} = (v - \omega)^2$ Log: $\ell[v]_{\omega} = KL(\omega||v)$ Very different notions of error

Given a notion of error, when can I *design* a proper loss to match? $0 \quad \mathbb{E}_{\rho}(\omega) \qquad 1$

Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should quantify error

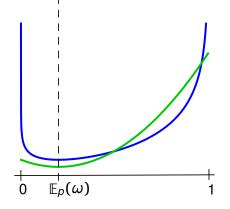
Two losses for eliciting a mean Squared: $\ell[\nu]_{\omega} = (\nu - \omega)^2$ Log: $\ell[\nu]_{\omega} = KL(\omega || \nu)$ Very different notions of error



Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should quantify error

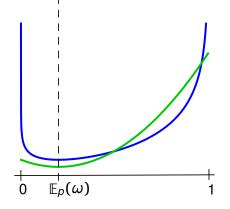
Two losses for eliciting a mean Squared: $\ell[\nu]_{\omega} = (\nu - \omega)^2$ Log: $\ell[\nu]_{\omega} = KL(\omega || \nu)$



Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should quantify error

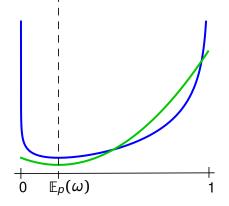
Two losses for eliciting a mean Squared: $\ell[\nu]_{\omega} = (\nu - \omega)^2$ Log: $\ell[\nu]_{\omega} = KL(\omega || \nu)$ Very different notions of error



Warm-up	Previous work	Main result	Prediction markets
000000			

Loss should quantify error

Two losses for eliciting a mean Squared: $\ell[\nu]_{\omega} = (\nu - \omega)^2$ Log: $\ell[\nu]_{\omega} = KL(\omega || \nu)$ Very different notions of error



Warm-up oooooo●	Previous work	Main result	Prediction markets
Motivation: P	roperties		

Problem: What if your "classification" problem has a huge (∞) number of classes?

E.g. Price of gas next month?

Solution: Use a $\Gamma : \Delta_{\Omega} \to \mathcal{V} \subseteq \mathbb{R}^{k}$

Only extract the "relevant information" from your data

Means are quite expressive:

- First k moments of a distribution: $\phi(\omega) = (\omega, \omega^2, \dots, \omega^k)$
- Covariance matrix: $\phi(\omega)_{(i,j)} = \omega_i \omega_j$

Warm-up ooooo●	Previous work	Main result	Prediction markets
Motivation	Properties		

Problem: What if your "classification" problem has a huge (∞) number of classes?

E.g. Price of gas next month?

Solution: Use a $\Gamma : \Delta_{\Omega} \to \mathcal{V} \subseteq \mathbb{R}^k$

Only extract the "relevant information" from your data

Means are quite expressive:

- First k moments of a distribution: $\phi(\omega) = (\omega, \omega^2, \dots, \omega^k)$
- Covariance matrix: $\phi(\omega)_{(i,j)} = \omega_i \omega_j$

Warm-up ooooo●	Previous work	Main result	Prediction markets
Motivation: Li	near Properties		

Problem: What if your "classification" problem has a huge (∞) number of classes?

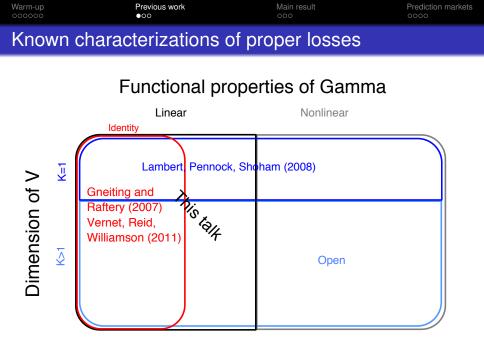
E.g. Price of gas next month?

Solution: Use a $\Gamma : \Delta_{\Omega} \to \mathcal{V} \subseteq \mathbb{R}^{k}$

Only extract the "relevant information" from your data

Means are quite expressive:

- First k moments of a distribution: $\phi(\omega) = (\omega, \omega^2, \dots, \omega^k)$
- Covariance matrix: $\phi(\omega)_{(i,j)} = \omega_i \omega_j$



Warm-up 000000	Previous work o●o	Main result	Prediction markets
Breaman	divergences		

Given convex $f : \mathcal{V} \rightarrow \mathbb{R}$, the Bregman *divergence* w.r.t. *f*:

$$D_f(x, y) := f(x) - f(y) - \nabla f(y) \cdot (x - y)$$

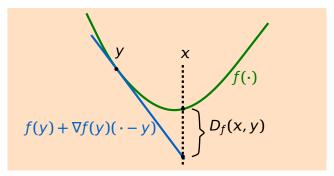
f is called: Bayes risk, regularizer, generalized entropy

Warm-up 000000	Previous work o●o	Main result	Prediction markets
Bregman	divergences		

Given convex $f : \mathcal{V} \rightarrow \mathbb{R}$, the Bregman *divergence* w.r.t. *f*:

$$D_f(x, y) := f(x) - f(y) - \nabla f(y) \cdot (x - y)$$

f is called: Bayes risk, regularizer, generalized entropy



Warm-up 000000	Previous work	Main result	Prediction markets
Divergences a	and means		

 $\ell[\nu]_\omega = D_f(\phi(\omega),\nu)$

```
\begin{aligned} \underset{v}{\operatorname{argmin}}{\operatorname{argmin}} & \left\{ \underbrace{v}_{\mathcal{V}} \right\} \\ &= \underset{v}{\operatorname{argmin}} \left\{ \underbrace{v}_{\mathcal{V}} \left[ f(\phi(\omega)) - f(v) - \nabla f(v) \cdot (\phi(\omega) - v) \right] \right\} \\ &= \underset{v}{\operatorname{argmin}} \left\{ -f(v) - \nabla f(v) \cdot (f(\rho) - v) \right\} \\ &= \underset{v}{\operatorname{argmin}} \left\{ P_{f}(f(\rho), v) - f(f(\rho)) \right\} = f(\rho) \end{aligned}
```

Warm-up 000000	Previous work	Main result	Prediction markets
Divergences a	and means		

 $\ell[\nu]_\omega = D_f(\phi(\omega),\nu)$

```
\begin{aligned} \arg\min_{\mathbf{v}} \{\ell[\mathbf{v}] \boldsymbol{\rho} \} \\ &= \arg\min_{\mathbf{v}} \left\{ \sum_{\boldsymbol{\omega} \in \mathcal{J}_{p}} \left[ f(\phi(\boldsymbol{\omega})) - f(\mathbf{v}) - \nabla f(\mathbf{v}) \cdot (\phi(\boldsymbol{\omega}) - \mathbf{v}) \right] \right\} \\ &= \arg\min_{\mathbf{v}} \left\{ -f(\mathbf{v}) - \nabla f(\mathbf{v}) \cdot (\Gamma(\boldsymbol{\rho}) - \mathbf{v}) \right\} \\ &= \arg\min_{\mathbf{v}} \left\{ P_{f}(\Gamma(\boldsymbol{\rho}), \mathbf{v}) - f(\Gamma(\boldsymbol{\rho})) \right\} = \Gamma(\boldsymbol{\rho}) \end{aligned}
```

Warm-up 000000	Previous work oo●	Main result	Prediction markets
Divergences a	and means		

 $\ell[\nu]_\omega = D_f(\phi(\omega),\nu)$

```
\operatorname{argmin}_{v} \{\ell[v]\rho\}
= \operatorname{argmin}_{v} \left\{ \underset{\omega \sim \rho}{\mathbb{E}} \left[ f(\phi(\omega)) - f(v) - \nabla f(v) \cdot (\phi(\omega) - v) \right] \right\}
= \operatorname{argmin}_{v} \{-f(v) - \nabla f(v) \cdot (\Gamma(\rho) - v)\}
= \operatorname{argmin}_{v} \left\{ D_{f}(\Gamma(\rho), v) - f(\Gamma(\rho)) \right\} = \Gamma(\rho)
```

Warm-up 000000	Previous work ○○●	Main result	Prediction markets	
Divergences and means				

 $\ell[v]_\omega = D_f(\phi(\omega), v)$

$$\underset{v}{\operatorname{argmin}} \{\ell[v]p\}$$

$$= \underset{v}{\operatorname{argmin}} \left\{ \underset{\omega \sim p}{\mathbb{E}} \left[f(\phi(\omega)) - f(v) - \nabla f(v) \cdot (\phi(\omega) - v) \right] \right\}$$

$$= \underset{v}{\operatorname{argmin}} \left\{ -f(v) - \nabla f(v) \cdot (\Gamma(\rho) - v) \right\}$$

$$= \underset{v}{\operatorname{argmin}} \left\{ D_f(\Gamma(\rho), v) - f(\Gamma(\rho)) \right\} = \Gamma(\rho)$$

Warm-up 000000	Previous work	Main result	Prediction markets	
Divergences and means				

 $\ell[\nu]_\omega = D_f(\phi(\omega),\nu)$

$$\underset{v}{\operatorname{argmin}} \{\ell[v]p\} \\ = \underset{v}{\operatorname{argmin}} \left\{ \underset{\omega \sim p}{\mathbb{E}} \left[f(\phi(\omega)) - f(v) - \nabla f(v) \cdot (\phi(\omega) - v) \right] \right\} \\ = \underset{v}{\operatorname{argmin}} \{ -f(v) - \nabla f(v) \cdot (\Gamma(p) - v) \} \\ = \underset{v}{\operatorname{argmin}} \left\{ D_f(\Gamma(p), v) - f(\Gamma(p)) \right\} = \Gamma(p)$$

Warm-up 000000	Previous work oo●	Main result	Prediction markets	
Divergences and means				

 $\ell[\nu]_\omega = D_f(\phi(\omega),\nu)$

$$\begin{aligned} \underset{v}{\operatorname{argmin}} \{\ell[v]p\} \\ &= \underset{v}{\operatorname{argmin}} \left\{ \underset{\omega \sim p}{\mathbb{E}} \left[f(\phi(\omega)) - f(v) - \nabla f(v) \cdot (\phi(\omega) - v) \right] \right\} \\ &= \underset{v}{\operatorname{argmin}} \{ -f(v) - \nabla f(v) \cdot (\Gamma(p) - v) \} \\ &= \underset{v}{\operatorname{argmin}} \left\{ D_f(\Gamma(p), v) - f(\Gamma(p)) \right\} = \Gamma(p) \end{aligned}$$

Warm-up 000000	Previous work	Main result ●oo	Prediction markets
Characte	rization for linear	properties	

This shows divergence-based \implies Γ -proper for some linear Γ *Q*: Is every Γ -proper loss ℓ divergence-based?

A: Yes¹!

Theorem (Abernethy, F.)

l is Γ -proper for linear $\Gamma \iff l$ is divergence-based

¹ with extremely weak differentiability assumptions

Warm-up 000000	Previous work	Main result ●oo	Prediction markets
Character	ization for linear	properties	

This shows divergence-based \implies Γ -proper for some linear Γ *Q*: Is every Γ -proper loss ℓ divergence-based?

A: Yes¹!

Theorem (Abernethy, F.)

l is Γ -proper for linear $\Gamma \iff l$ is divergence-based

¹with extremely weak differentiability assumptions

Warm-up oooooo	Previous work	Main result ○●○	Prediction markets
Proof Intu	ition		
we draw in	tuition from the identit	y case <i>i.e.</i> $I(p) = p$)
Theorem (C	Gneiting and Raftery, 2	2010)	

 $\ell : \Delta_{\Omega} \times \Omega \to \mathbb{R}$ proper $\implies \ell$ is divergence-based

Their proof:

- **Extract** f(p) = l[p] p Bayes risk, concave
- Observe $l[p] p + l[p] (q-p) \ge l[q] q$ from propriety

• Hence l[p] is a gradient of $f! \implies$ divergence

Warm-up 000000	Previous work	Main result ⊙●⊙	Prediction markets
Proof Intuition	า		
We draw intuitio	n from the identi	ty case <i>i.e.</i> $\Gamma(p) =$	p
Theorem (Gneit	ing and Raftery,	2010)	

 $\ell : \Delta_{\Omega} \times \Omega \to \mathbb{R} \text{ proper} \Longrightarrow \ell \text{ is divergence-based}$

Their proof:

Extractf(p) = l[p] pBayes risk, concaveObservel[p] q $\geq l[q] q$ from propriety

• Hence l[p] is a gradient of $f! \implies$ divergence

Warm-up ೦೦೦೦೦೦	Previous work	Main result ⊙●⊙	Prediction markets
Proof Intuition	l i		
We draw intuition	n from the identity ca	se <i>i.e.</i> $\Gamma(p) = p$	
Theorem (Gneiti	ng and Raftery, 2010))	

 $\ell : \Delta_{\Omega} \times \Omega \to \mathbb{R}$ proper $\implies \ell$ is divergence-based

Their proof:

• Extract $f(p) = \ell[p] p$ Bayes risk, concave

• Observe $\ell[p] p + \ell[p] (q-p) \ge \ell[q] q$ from propriety

Warm-up 000000	Previous work	Main result ⊙●⊙	Prediction markets
Proof Intu	ition		
We draw in	tuition from the identit	y case <i>i.e.</i> $\Gamma(p) = p$)
Theorem (0	Gneiting and Raftery, 2	2010)	

 $l: \Delta_{\Omega} \times \Omega \to \mathbb{R}$ proper $\implies l$ is divergence-based

Their proof:

Extract f(p) = l[p] p Bayes risk, concave

• Observe $\ell[p] p + \ell[p] (q-p) \ge \ell[q] q$ from propriety

Warm-up 000000	Previous work	Main result o●o	Prediction markets
Proof Intuition	۱		
We draw intuitio	n from the ident	ity case <i>i.e.</i> $\Gamma(p) =$	p
Theorem (Gneiti	ing and Raftery,	2010)	-

 $\ell : \Delta_{\Omega} \times \Omega \to \mathbb{R}$ proper $\implies \ell$ is divergence-based

Their proof:

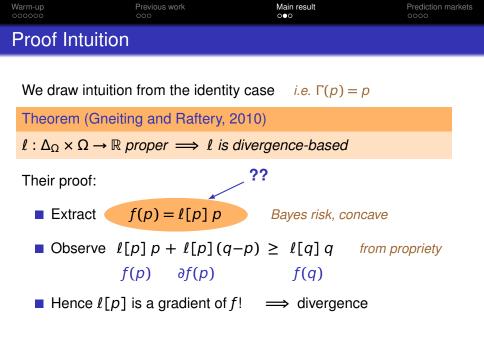
Extract f(p) = l[p] p Bayes risk, concave
Observe $l[p] p + l[p](q-p) \ge l[q] q$ from propriety f(p) = f(p) = f(q)

Warm-up 000000	Previous work	Main result ⊙●⊙	Prediction markets
Proof Intu	ition		
We draw in	tuition from the identit	y case <i>i.e.</i> Г(<i>p</i>) = р)
Theorem (0	Gneiting and Raftery, 2	2010)	

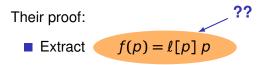
 $\ell : \Delta_{\Omega} \times \Omega \to \mathbb{R}$ proper $\implies \ell$ is divergence-based

Their proof:

Extract f(p) = l[p] p Bayes risk, concave
Observe $l[p] p + l[p](q-p) \ge l[q] q$ from propriety $f(p) \quad \partial f(p)$ f(q)



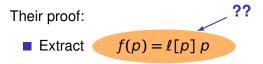
Warm-up 000000	Previous work	Main result oo●	Prediction markets
Proof Intiution	1		



Challenge: How to define *f* when $\mathcal{V} \neq \Delta_{\Omega}$?

 Let p̂ such that Γ ∘ p̂ ≡ id_v A "family" of distributions with "parameter space" V
 Now f(v) = l[v]p̂[v]

Warm-up ೦೦೦೦೦೦	Previous work	Main result oo●	Prediction markets
Proof Intiution	ר ח		



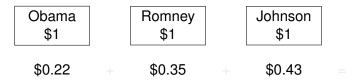
Challenge: How to define *f* when $\mathcal{V} \neq \Delta_{\Omega}$?

Let p̂ such that Γ ∘ p̂ ≡ id_V
 A "family" of distributions with "parameter space" V

 Now f(v) = ℓ[v]p̂[v]

Warm-up 000000	Previous work	Main result	Prediction markets •000
		NA subsets	

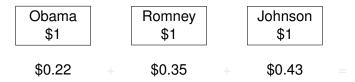
Switching Gears: Prediction Markets



Traders buy and sell these contractsPrices reflect the consensus prediction

0			
			0000
Warm-up	Previous work	Main result	Prediction markets

Switching Gears: Prediction Markets

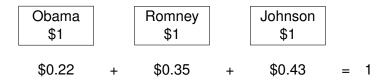


Traders buy and sell these contracts

Prices reflect the consensus prediction

• • • • •			
Warm-up 000000	Previous work	Main result	Prediction markets

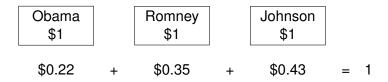
Switching Gears: Prediction Markets



Traders buy and sell these contracts

Prices reflect the consensus prediction

Out it a latin of			
			0000
Warm-up	Previous work	Main result	Prediction markets



- Traders buy and sell these contracts
- Prices reflect the consensus prediction

Warm-up oooooo	Previous work	Main result	Prediction markets ○●○○
Quantifyi	ng the Wagers		

In standard market maker model, prices *adapt* to trades

From NIPS 2011, we can describe the net *profit* of such a trade in terms of the change $\mathbf{p} \rightarrow \mathbf{p'}$ in the *prices*...

... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)

Traders have profit $l[\mathbf{p}]_{\omega} - l[\mathbf{p'}]_{\omega} \iff l$ is divergence-based

Aside: can use this framework for data mining competitions!

Warm-up 000000	Previous work	Main result	Prediction markets ○●○○
Quantifying th	ne Wagers		

In standard market maker model, prices *adapt* to trades

From NIPS 2011, we can describe the net *profit* of such a trade in terms of the change $\mathbf{p} \rightarrow \mathbf{p'}$ in the *prices*...

... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)

Traders have profit $l[\mathbf{p}]_{\omega} - l[\mathbf{p}']_{\omega} \iff l$ is divergence-based

Aside: can use this framework for data mining competitions!

Warm-up 000000	Previous work	Main result	Prediction markets ○●○○	
Quantifying the Wagers				

In standard market maker model, prices *adapt* to trades

From NIPS 2011, we can describe the net *profit* of such a trade in terms of the change $\mathbf{p} \rightarrow \mathbf{p'}$ in the *prices*...

... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)

Traders have profit $l[\mathbf{p}]_{\omega} - l[\mathbf{p}']_{\omega} \iff l$ is divergence-based

Aside: can use this framework for data mining competitions!

Warm-up 000000	Previous work	Main result	Prediction markets			
Tving it all together						

NIPS 2011:

Traders have profit $\ell[\mathbf{p}]_{\omega} - \ell[\mathbf{p'}]_{\omega} \iff \ell$ divergence-based

COLT 2012:

l divergence-based $\iff l$ proper loss for linear Γ

Hence, prediction markets $\stackrel{1 \text{ to } 1}{\longleftrightarrow}$ proper losses for means!

i.e. Prediction Markets \iff Market Scoring Rules

Warm-up 000000	Previous work	Main result	Prediction markets oo●o			
Tving it all together						

NIPS 2011:

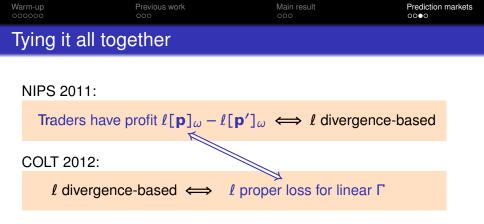
Traders have profit $\ell[\mathbf{p}]_{\omega} - \ell[\mathbf{p'}]_{\omega} \iff \ell$ divergence-based

COLT 2012:

 ℓ divergence-based $\iff \ell$ proper loss for linear Γ

Hence, prediction markets $\stackrel{1 \text{ to } 1}{\iff}$ proper losses for means!

i.e. Prediction Markets \iff Market Scoring Rules



Hence, prediction markets $\stackrel{1 \text{ to } 1}{\longleftrightarrow}$ proper losses for means!

i.e. Prediction Markets \iff Market Scoring Rules

Warm-up 000000 Main result

Prediction markets

Thanks!