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Proper Losses

Typical setting: classification

W Labelsy e [n]={1,...,n}

B Prediction p € Ap

B Loss!:Ap — R" «— avector: loss of p and y isL[p],

m [ is properif p=argmin{ £Z[qlp }

’ Ey~p[£[q])]

Example: log loss

m Take [[p]y = —logpy

m Now £[q]p = -3 pylogqy =KL(pllq) + H(p)
Minimized atq = p
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Proper Losses... for Properties

Our setting: properties of distributions
B Outcomes w € Q
m Distributional property ' : Aqg — V € RK  summary information
B Prediction vey
mLlossl:V—-R?Y Jossofvandwisl[v],
m /is -properif T(p) = arg‘snin{ [vlp}

We will consider linear I
B M(p) =Ew~p[@P(w)] forsome ¢ : Q =V e means
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Motivation

This talk:

A Characterization of Proper Losses for Linear Properties

Our goal

Given some linear property ' : Aqg — V, determine exactly the
losses £ : V — R? which are I"-proper

... Why bother?
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Motivation: Proper

Proper losses are well-calibrated

Example: learning a coin’s bias p
B Want / to measure performance
m After N >> 1 flips, we want

#heads #tails
{ [C]] heads T+

pzargmin{ f[a]tails}
q

“expected” loss of predicting q
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Motivation: Characterization

Loss should quantify error

Two losses for eliciting a mean
m Squared: £[V]w = (V — w)?
m Log: L[v]y = KL(w|V)
Very different notions of error

Given a notion of error, when can

1
| design a proper loss to match? Ep(w) 1

o+
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Motivation: Linear Properties

Problem: What if your “classification” problem has a huge (o)
number of classes?
E.g. Price of gas next month?

Solution: UseaTl : Aq — V CRK
Only extract the “relevant information” from your data

Means are quite expressive:
m First kK moments of a distribution: ¢(w) = (w, W2, ..., wk)
m Covariance matrix: ¢(w)(;j) = Wiw;
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Divergences and means

Definition: £ is divergence-based if 3f, ¢ s.t.

L[v]w = Ds(¢(w), v)
Fact: this £ is proper for linear property I'(p) = Ew~p[@(w)]

arg\snin{l[v]p}
= argmin {w[gp [F(9(@)) = F(V) = If (V) - (9(w) = V)] }
= argmin {=f(v) = Vf(v) - (F(p) = V)}
= argmin {D;("'(p), v) = f(N(p))} = I'(p)
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@00

Characterization for linear properties

This shows divergence-based = [I"-proper for some linear I’

Q: |s every "-proper loss £ divergence-based?
A: Yes'l

Theorem (Abernethy, F.)

{ is "-proper for linear " <= [ is divergence-based

Twith extremely weak differentiability assumptions
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m Observe L[p]lp + L[pl(g—p) = L[qlqg  from propriety
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Proof Intiution

Their proof: L ??

m Extract fp)=1L[plp

Challenge: How to define f when V # Aq?

B Let p suchthat "o p =idy
A “family” of distributions with “parameter space”V

m Now f(v) =£[v]p[V]
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Switching Gears: Prediction Markets

Obama Romney Johnson
$1 $1 $1
$0.22 + $0.35 + $0.43 = 1

m Traders buy and sell these contracts
m Prices reflect the consensus prediction
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Quantifying the Wagers

In standard market maker model, prices adapt to trades
From NIPS 2011, we can describe the net profit of such a trade in

terms of the change p — p’ in the prices...

... as the drop in a divergence-based loss!

Theorem (Abernethy, F.)
Traders have profit L[[plw — L[P’]le < ! is divergence-based

Aside: can use this framework for data mining competitions!
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Tying it all together

NIPS 2011:

Traders have profit [[p]o, — L[p’], < [ divergence-based

COLT 2012:

{ divergence-based <= [ proper loss for linear I

Lo 1to1
Hence, prediction markets <= proper losses for means!

i.e. Prediction Markets <= Market Scoring Rules
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Thanks!
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